Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitignore +2 -0
- README.md +19 -0
- app.py +89 -0
- requirements.txt +9 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
README.md
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
title: Arabic Author Brain QA
|
| 4 |
+
emoji: "📚"
|
| 5 |
+
colorFrom: blue
|
| 6 |
+
colorTo: blue
|
| 7 |
+
sdk: gradio
|
| 8 |
+
sdk_version: "4.25.0"
|
| 9 |
+
app_file: app.py
|
| 10 |
+
pinned: false
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Arabic Author Brain QA
|
| 14 |
+
|
| 15 |
+
Upload Arabic books in PDF, DOCX, or DOC format, and build an interactive Q&A bot that understands the ideas inside the books.
|
| 16 |
+
|
| 17 |
+
## بالعربية
|
| 18 |
+
ارفع كتبك بالعربية ودع النظام يتعلم منها ليجيب عن أسئلتك بناءً على الأفكار، وليس مجرد تكرار النصوص!
|
| 19 |
+
|
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
import tempfile
|
| 5 |
+
import shutil
|
| 6 |
+
import pdfminer.high_level
|
| 7 |
+
import docx
|
| 8 |
+
import faiss
|
| 9 |
+
import torch
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
+
from sentence_transformers import SentenceTransformer
|
| 12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 14 |
+
from langchain.vectorstores import FAISS
|
| 15 |
+
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
# تحميل النماذج
|
| 19 |
+
embedding_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2', device=device)
|
| 20 |
+
qa_model_name = "aubmindlab/aragpt2-base"
|
| 21 |
+
qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
| 22 |
+
qa_model = AutoModelForCausalLM.from_pretrained(qa_model_name).to(device)
|
| 23 |
+
|
| 24 |
+
# إعداد قاعدة البيانات
|
| 25 |
+
index = None
|
| 26 |
+
docs = []
|
| 27 |
+
|
| 28 |
+
def extract_text(file_path):
|
| 29 |
+
if file_path.endswith('.pdf'):
|
| 30 |
+
with open(file_path, 'rb') as f:
|
| 31 |
+
return pdfminer.high_level.extract_text(f)
|
| 32 |
+
elif file_path.endswith('.docx') or file_path.endswith('.doc'):
|
| 33 |
+
doc = docx.Document(file_path)
|
| 34 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
| 35 |
+
else:
|
| 36 |
+
raise ValueError("صيغة ملف غير مدعومة")
|
| 37 |
+
|
| 38 |
+
def process_files(files):
|
| 39 |
+
global index, docs
|
| 40 |
+
all_text = ""
|
| 41 |
+
for file in files:
|
| 42 |
+
text = extract_text(file.name)
|
| 43 |
+
all_text += text + "\n"
|
| 44 |
+
|
| 45 |
+
# تقسيم النص إلى مقاطع
|
| 46 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 47 |
+
texts = text_splitter.split_text(all_text)
|
| 48 |
+
|
| 49 |
+
# إنشاء المتجهات
|
| 50 |
+
embeddings = embedding_model.encode(texts, show_progress_bar=True, convert_to_tensor=True)
|
| 51 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 52 |
+
index.add(embeddings.cpu().numpy())
|
| 53 |
+
docs = texts
|
| 54 |
+
return "✅ تم تحميل الكتب واستيعاب الأفكار! النظام جاهز للإجابة."
|
| 55 |
+
|
| 56 |
+
def generate_answer(question):
|
| 57 |
+
global index, docs
|
| 58 |
+
if index is None:
|
| 59 |
+
return "❌ الرجاء رفع الكتب أولاً."
|
| 60 |
+
|
| 61 |
+
q_emb = embedding_model.encode([question])
|
| 62 |
+
D, I = index.search(q_emb, k=3)
|
| 63 |
+
context = "\n".join([docs[i] for i in I[0]])
|
| 64 |
+
|
| 65 |
+
# تجهيز الإدخال للنموذج
|
| 66 |
+
prompt = f"سؤال: {question}\n\nمحتوى ذو صلة:\n{context}\n\nالإجابة:"
|
| 67 |
+
inputs = qa_tokenizer(prompt, return_tensors='pt').to(device)
|
| 68 |
+
outputs = qa_model.generate(**inputs, max_new_tokens=300, pad_token_id=qa_tokenizer.eos_token_id)
|
| 69 |
+
answer = qa_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 70 |
+
return answer.split("الإجابة:")[-1].strip()
|
| 71 |
+
|
| 72 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 73 |
+
gr.Markdown("""
|
| 74 |
+
# 🚀 أهلاً بك في محاكاة عقل المؤلف
|
| 75 |
+
ارفع كتبك واستعد للانطلاق في رحلة استكشاف الأفكار العميقة!
|
| 76 |
+
""")
|
| 77 |
+
with gr.Tab("📚 رفع الكتب للتدريب"):
|
| 78 |
+
upload = gr.File(file_types=['.pdf', '.docx', '.doc'], file_count='multiple')
|
| 79 |
+
train_button = gr.Button("🚀 ابدأ التدريب!")
|
| 80 |
+
train_output = gr.Textbox(label="🔵 حالة التدريب", interactive=False)
|
| 81 |
+
with gr.Tab("❓ اسأل الكتاب"):
|
| 82 |
+
question = gr.Textbox(label="اكتب سؤالك هنا...")
|
| 83 |
+
answer = gr.Textbox(label="الإجابة", interactive=False)
|
| 84 |
+
ask_button = gr.Button("✉️ أرسل السؤال!"")
|
| 85 |
+
|
| 86 |
+
train_button.click(process_files, inputs=[upload], outputs=[train_output])
|
| 87 |
+
ask_button.click(generate_answer, inputs=[question], outputs=[answer])
|
| 88 |
+
|
| 89 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
gradio
|
| 3 |
+
transformers
|
| 4 |
+
sentence-transformers
|
| 5 |
+
pdfminer.six
|
| 6 |
+
python-docx
|
| 7 |
+
faiss-cpu
|
| 8 |
+
langchain
|
| 9 |
+
torch
|