Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration,
|
| 4 |
from huggingface_hub import login
|
| 5 |
import os
|
| 6 |
|
|
@@ -18,7 +18,7 @@ whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
|
| 18 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
| 19 |
|
| 20 |
# Initialize the summarization model and tokenizer
|
| 21 |
-
summarization_model =
|
| 22 |
summarization_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 23 |
|
| 24 |
# Function to transcribe audio
|
|
@@ -32,8 +32,8 @@ def transcribe_audio(audio_file):
|
|
| 32 |
|
| 33 |
# Function to summarize text
|
| 34 |
def summarize_text(text):
|
| 35 |
-
inputs = summarization_tokenizer
|
| 36 |
-
summary_ids = summarization_model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
|
| 37 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 38 |
return summary
|
| 39 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from huggingface_hub import login
|
| 5 |
import os
|
| 6 |
|
|
|
|
| 18 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
| 19 |
|
| 20 |
# Initialize the summarization model and tokenizer
|
| 21 |
+
summarization_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 22 |
summarization_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 23 |
|
| 24 |
# Function to transcribe audio
|
|
|
|
| 32 |
|
| 33 |
# Function to summarize text
|
| 34 |
def summarize_text(text):
|
| 35 |
+
inputs = summarization_tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
| 36 |
+
summary_ids = summarization_model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
|
| 37 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 38 |
return summary
|
| 39 |
|