Spaces:
Sleeping
Sleeping
Updated app again
Browse files
app.py
CHANGED
|
@@ -1,5 +1,25 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
@app.get("/health")
|
| 5 |
def health():
|
|
@@ -7,4 +27,50 @@ def health():
|
|
| 7 |
|
| 8 |
@app.get("/")
|
| 9 |
def root():
|
| 10 |
-
return {"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py (safe, use /tmp for cache)
|
| 2 |
+
import os
|
| 3 |
+
import logging
|
| 4 |
+
from fastapi import FastAPI, HTTPException
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
import tempfile
|
| 7 |
+
|
| 8 |
+
# --- Put caches in a writable temp dir to avoid permission errors ---
|
| 9 |
+
TMP_CACHE = os.environ.get("HF_CACHE_DIR", os.path.join(tempfile.gettempdir(), "hf_cache"))
|
| 10 |
+
try:
|
| 11 |
+
os.makedirs(TMP_CACHE, exist_ok=True)
|
| 12 |
+
except Exception as e:
|
| 13 |
+
# if even this fails, fall back to tempfile.gettempdir()
|
| 14 |
+
TMP_CACHE = tempfile.gettempdir()
|
| 15 |
+
|
| 16 |
+
# export environment vars before importing transformers
|
| 17 |
+
os.environ["TRANSFORMERS_CACHE"] = TMP_CACHE
|
| 18 |
+
os.environ["HF_HOME"] = TMP_CACHE
|
| 19 |
+
os.environ["HF_DATASETS_CACHE"] = TMP_CACHE
|
| 20 |
+
os.environ["HF_METRICS_CACHE"] = TMP_CACHE
|
| 21 |
+
|
| 22 |
+
app = FastAPI(title="DirectEd LoRA API (safe startup)")
|
| 23 |
|
| 24 |
@app.get("/health")
|
| 25 |
def health():
|
|
|
|
| 27 |
|
| 28 |
@app.get("/")
|
| 29 |
def root():
|
| 30 |
+
return {"Status": "AI backend is running"}
|
| 31 |
+
|
| 32 |
+
class Request(BaseModel):
|
| 33 |
+
prompt: str
|
| 34 |
+
max_new_tokens: int = 150
|
| 35 |
+
temperature: float = 0.7
|
| 36 |
+
|
| 37 |
+
pipe = None
|
| 38 |
+
|
| 39 |
+
@app.on_event("startup")
|
| 40 |
+
def load_model():
|
| 41 |
+
global pipe
|
| 42 |
+
try:
|
| 43 |
+
# heavy imports done during startup
|
| 44 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 45 |
+
from peft import PeftModel
|
| 46 |
+
|
| 47 |
+
BASE_MODEL = "unsloth/llama-3-8b-Instruct-bnb-4bit"
|
| 48 |
+
ADAPTER_REPO = "rayymaxx/DirectEd-AI-LoRA" # <-- replace with your adapter repo
|
| 49 |
+
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 51 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
BASE_MODEL,
|
| 53 |
+
device_map="auto",
|
| 54 |
+
low_cpu_mem_usage=True,
|
| 55 |
+
torch_dtype="auto",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
| 59 |
+
model.eval()
|
| 60 |
+
|
| 61 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
| 62 |
+
logging.info("Model and adapter loaded successfully.")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logging.exception("Failed to load model at startup: %s", e)
|
| 65 |
+
pipe = None
|
| 66 |
+
|
| 67 |
+
@app.post("/generate")
|
| 68 |
+
def generate(req: Request):
|
| 69 |
+
if pipe is None:
|
| 70 |
+
raise HTTPException(status_code=503, detail="Model not loaded. Check logs.")
|
| 71 |
+
try:
|
| 72 |
+
out = pipe(req.prompt, max_new_tokens=req.max_new_tokens, temperature=req.temperature, do_sample=True)
|
| 73 |
+
return {"response": out[0]["generated_text"]}
|
| 74 |
+
except Exception as e:
|
| 75 |
+
logging.exception("Generation failed: %s", e)
|
| 76 |
+
raise HTTPException(status_code=500, detail=str(e))
|