CSDS553_Demo / app.py
sdkrastev's picture
Importing files from HF Spaces
9780e52
raw
history blame
3.33 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
pipe = None
stop_inference = False
# Fancy styling
fancy_css = """
#main-container {
background-color: #f0f0f0;
font-family: 'Arial', sans-serif;
}
.gradio-container {
max-width: 700px;
margin: 0 auto;
padding: 20px;
background: white;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
border-radius: 10px;
}
.gr-button {
background-color: #4CAF50;
color: white;
border: none;
border-radius: 5px;
padding: 10px 20px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #45a049;
}
.gr-slider input {
color: #4CAF50;
}
.gr-chat {
font-size: 16px;
}
#title {
text-align: center;
font-size: 2em;
margin-bottom: 20px;
color: #333;
}
"""
def respond(
message,
history: list[dict[str, str]],
system_message,
max_tokens,
temperature,
top_p,
hf_token: gr.OAuthToken,
use_local_model: bool,
):
global pipe
# Build messages from history
messages = [{"role": "system", "content": system_message}]
messages.extend(history)
messages.append({"role": "user", "content": message})
response = ""
if use_local_model:
print("[MODE] local")
from transformers import pipeline
import torch
if pipe is None:
pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct")
# Build prompt as plain text
prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages])
outputs = pipe(
prompt,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
response = outputs[0]["generated_text"][len(prompt):]
yield response.strip()
else:
print("[MODE] api")
if hf_token is None or not getattr(hf_token, "token", None):
yield "⚠️ Please log in with your Hugging Face account first."
return
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
choices = chunk.choices
token = ""
if len(choices) and choices[0].delta.content:
token = choices[0].delta.content
response += token
yield response
chatbot = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
gr.Checkbox(label="Use Local Model", value=False),
],
type="messages",
)
with gr.Blocks(css=fancy_css) as demo:
with gr.Row():
gr.Markdown("<h1 style='text-align: center;'>🌟 Fancy AI Chatbot 🌟</h1>")
gr.LoginButton()
chatbot.render()
if __name__ == "__main__":
demo.launch()