Spaces:
Running
Running
| import torch | |
| class MomentumBuffer: | |
| def __init__(self, momentum: float = -0.75): | |
| self.momentum = momentum | |
| self.running_average = 0 | |
| def update(self, update_value: torch.Tensor): | |
| new_average = self.momentum * self.running_average | |
| self.running_average = update_value + new_average | |
| def project( | |
| v0: torch.Tensor, # [B, C, H, W] | |
| v1: torch.Tensor, # [B, C, H, W] | |
| dims=[-1, -2], | |
| ): | |
| dtype = v0.dtype | |
| device_type = v0.device.type | |
| if device_type == "mps": | |
| v0, v1 = v0.cpu(), v1.cpu() | |
| v0, v1 = v0.double(), v1.double() | |
| v1 = torch.nn.functional.normalize(v1, dim=dims) | |
| v0_parallel = (v0 * v1).sum(dim=dims, keepdim=True) * v1 | |
| v0_orthogonal = v0 - v0_parallel | |
| return v0_parallel.to(dtype).to(device_type), v0_orthogonal.to(dtype).to(device_type) | |
| def apg_forward( | |
| pred_cond: torch.Tensor, # [B, C, H, W] | |
| pred_uncond: torch.Tensor, # [B, C, H, W] | |
| guidance_scale: float, | |
| momentum_buffer: MomentumBuffer = None, | |
| eta: float = 0.0, | |
| norm_threshold: float = 2.5, | |
| dims=[-1, -2], | |
| ): | |
| diff = pred_cond - pred_uncond | |
| if momentum_buffer is not None: | |
| momentum_buffer.update(diff) | |
| diff = momentum_buffer.running_average | |
| if norm_threshold > 0: | |
| ones = torch.ones_like(diff) | |
| diff_norm = diff.norm(p=2, dim=dims, keepdim=True) | |
| scale_factor = torch.minimum(ones, norm_threshold / diff_norm) | |
| diff = diff * scale_factor | |
| diff_parallel, diff_orthogonal = project(diff, pred_cond, dims) | |
| normalized_update = diff_orthogonal + eta * diff_parallel | |
| pred_guided = pred_cond + (guidance_scale - 1) * normalized_update | |
| return pred_guided | |
| def cfg_forward(cond_output, uncond_output, cfg_strength): | |
| return uncond_output + cfg_strength * (cond_output - uncond_output) | |
| def cfg_double_condition_forward( | |
| cond_output, | |
| uncond_output, | |
| only_text_cond_output, | |
| guidance_scale_text, | |
| guidance_scale_lyric, | |
| ): | |
| return (1 - guidance_scale_text) * uncond_output + (guidance_scale_text - guidance_scale_lyric) * only_text_cond_output + guidance_scale_lyric * cond_output | |
| def optimized_scale(positive_flat, negative_flat): | |
| # Calculate dot production | |
| dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
| # Squared norm of uncondition | |
| squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
| # st_star = v_cond^T * v_uncond / ||v_uncond||^2 | |
| st_star = dot_product / squared_norm | |
| return st_star | |
| def cfg_zero_star(noise_pred_with_cond, noise_pred_uncond, guidance_scale, i, zero_steps=1, use_zero_init=True): | |
| bsz = noise_pred_with_cond.shape[0] | |
| positive_flat = noise_pred_with_cond.view(bsz, -1) | |
| negative_flat = noise_pred_uncond.view(bsz, -1) | |
| alpha = optimized_scale(positive_flat, negative_flat) | |
| alpha = alpha.view(bsz, 1, 1, 1) | |
| if (i <= zero_steps) and use_zero_init: | |
| noise_pred = noise_pred_with_cond * 0. | |
| else: | |
| noise_pred = noise_pred_uncond * alpha + guidance_scale * (noise_pred_with_cond - noise_pred_uncond * alpha) | |
| return noise_pred | |