Spaces:
Running
Running
[feat] add repainting & edit
Browse files- pipeline_ace_step.py +401 -50
- ui/components.py +254 -13
pipeline_ace_step.py
CHANGED
|
@@ -4,6 +4,7 @@ import os
|
|
| 4 |
import re
|
| 5 |
|
| 6 |
import torch
|
|
|
|
| 7 |
from loguru import logger
|
| 8 |
from tqdm import tqdm
|
| 9 |
import json
|
|
@@ -22,11 +23,11 @@ from models.ace_step_transformer import ACEStepTransformer2DModel
|
|
| 22 |
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
|
| 23 |
from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward
|
| 24 |
import torchaudio
|
|
|
|
|
|
|
| 25 |
torch.backends.cudnn.benchmark = False
|
| 26 |
torch.set_float32_matmul_precision('high')
|
| 27 |
-
|
| 28 |
-
# Enable TF32 for faster training on Ampere GPUs,
|
| 29 |
-
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
| 30 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 31 |
|
| 32 |
|
|
@@ -49,9 +50,10 @@ def ensure_directory_exists(directory):
|
|
| 49 |
REPO_ID = "ACE-Step/ACE-Step-v1-3.5B"
|
| 50 |
|
| 51 |
|
|
|
|
| 52 |
class ACEStepPipeline:
|
| 53 |
|
| 54 |
-
def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, **kwargs):
|
| 55 |
if checkpoint_dir is None:
|
| 56 |
if persistent_storage_path is None:
|
| 57 |
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
|
|
@@ -64,6 +66,7 @@ class ACEStepPipeline:
|
|
| 64 |
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
|
| 65 |
self.device = device
|
| 66 |
self.loaded = False
|
|
|
|
| 67 |
|
| 68 |
def load_checkpoint(self, checkpoint_dir=None):
|
| 69 |
device = self.device
|
|
@@ -157,9 +160,10 @@ class ACEStepPipeline:
|
|
| 157 |
self.loaded = True
|
| 158 |
|
| 159 |
# compile
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
| 163 |
|
| 164 |
def get_text_embeddings(self, texts, device, text_max_length=256):
|
| 165 |
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
|
|
@@ -226,7 +230,7 @@ class ACEStepPipeline:
|
|
| 226 |
|
| 227 |
def get_lang(self, text):
|
| 228 |
language = "en"
|
| 229 |
-
try:
|
| 230 |
_ = self.lang_segment.getTexts(text)
|
| 231 |
langCounts = self.lang_segment.getCounts()
|
| 232 |
language = langCounts[0][0]
|
|
@@ -267,6 +271,250 @@ class ACEStepPipeline:
|
|
| 267 |
print("tokenize error", e, "for line", line, "major_language", lang)
|
| 268 |
return lyric_token_idx
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
@torch.no_grad()
|
| 271 |
def text2music_diffusion_process(
|
| 272 |
self,
|
|
@@ -296,13 +544,16 @@ class ACEStepPipeline:
|
|
| 296 |
add_retake_noise=False,
|
| 297 |
guidance_scale_text=0.0,
|
| 298 |
guidance_scale_lyric=0.0,
|
|
|
|
|
|
|
|
|
|
| 299 |
):
|
| 300 |
|
| 301 |
logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale))
|
| 302 |
do_classifier_free_guidance = True
|
| 303 |
if guidance_scale == 0.0 or guidance_scale == 1.0:
|
| 304 |
do_classifier_free_guidance = False
|
| 305 |
-
|
| 306 |
do_double_condition_guidance = False
|
| 307 |
if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0:
|
| 308 |
do_double_condition_guidance = True
|
|
@@ -322,7 +573,10 @@ class ACEStepPipeline:
|
|
| 322 |
num_train_timesteps=1000,
|
| 323 |
shift=3.0,
|
| 324 |
)
|
|
|
|
| 325 |
frame_length = int(duration * 44100 / 512 / 8)
|
|
|
|
|
|
|
| 326 |
|
| 327 |
if len(oss_steps) > 0:
|
| 328 |
infer_steps = max(oss_steps)
|
|
@@ -337,16 +591,30 @@ class ACEStepPipeline:
|
|
| 337 |
logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}")
|
| 338 |
else:
|
| 339 |
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
|
| 340 |
-
|
| 341 |
target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype)
|
|
|
|
|
|
|
| 342 |
if add_retake_noise:
|
| 343 |
retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype)
|
| 344 |
retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
# to make sure mean = 0, std = 1
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
|
| 349 |
-
|
| 350 |
# guidance interval
|
| 351 |
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
|
| 352 |
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
|
|
@@ -356,20 +624,20 @@ class ACEStepPipeline:
|
|
| 356 |
|
| 357 |
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
|
| 358 |
handlers = []
|
| 359 |
-
|
| 360 |
def hook(module, input, output):
|
| 361 |
output[:] *= tau
|
| 362 |
return output
|
| 363 |
-
|
| 364 |
for i in range(l_min, l_max):
|
| 365 |
handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook)
|
| 366 |
handlers.append(handler)
|
| 367 |
-
|
| 368 |
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs)
|
| 369 |
-
|
| 370 |
for hook in handlers:
|
| 371 |
hook.remove()
|
| 372 |
-
|
| 373 |
return encoder_hidden_states
|
| 374 |
|
| 375 |
# P(speaker, text, lyric)
|
|
@@ -402,7 +670,7 @@ class ACEStepPipeline:
|
|
| 402 |
torch.zeros_like(lyric_token_ids),
|
| 403 |
lyric_mask,
|
| 404 |
)
|
| 405 |
-
|
| 406 |
encoder_hidden_states_no_lyric = None
|
| 407 |
if do_double_condition_guidance:
|
| 408 |
# P(null_speaker, text, lyric_weaker)
|
|
@@ -429,11 +697,11 @@ class ACEStepPipeline:
|
|
| 429 |
|
| 430 |
def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20):
|
| 431 |
handlers = []
|
| 432 |
-
|
| 433 |
def hook(module, input, output):
|
| 434 |
output[:] *= tau
|
| 435 |
return output
|
| 436 |
-
|
| 437 |
for i in range(l_min, l_max):
|
| 438 |
handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook)
|
| 439 |
handlers.append(handler)
|
|
@@ -441,10 +709,10 @@ class ACEStepPipeline:
|
|
| 441 |
handlers.append(handler)
|
| 442 |
|
| 443 |
sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample
|
| 444 |
-
|
| 445 |
for hook in handlers:
|
| 446 |
hook.remove()
|
| 447 |
-
|
| 448 |
return sample
|
| 449 |
|
| 450 |
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
|
|
@@ -551,7 +819,13 @@ class ACEStepPipeline:
|
|
| 551 |
).sample
|
| 552 |
|
| 553 |
target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
|
|
|
|
| 555 |
return target_latents
|
| 556 |
|
| 557 |
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="flac"):
|
|
@@ -570,7 +844,7 @@ class ACEStepPipeline:
|
|
| 570 |
def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="flac"):
|
| 571 |
if save_path is None:
|
| 572 |
logger.warning("save_path is None, using default path ./outputs/")
|
| 573 |
-
base_path = f"./outputs
|
| 574 |
ensure_directory_exists(base_path)
|
| 575 |
else:
|
| 576 |
base_path = save_path
|
|
@@ -581,6 +855,16 @@ class ACEStepPipeline:
|
|
| 581 |
torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format)
|
| 582 |
return output_path_flac
|
| 583 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 584 |
def __call__(
|
| 585 |
self,
|
| 586 |
audio_duration: float = 60.0,
|
|
@@ -604,6 +888,14 @@ class ACEStepPipeline:
|
|
| 604 |
retake_seeds: list = None,
|
| 605 |
retake_variance: float = 0.5,
|
| 606 |
task: str = "text2music",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
save_path: str = None,
|
| 608 |
format: str = "flac",
|
| 609 |
batch_size: int = 1,
|
|
@@ -626,7 +918,7 @@ class ACEStepPipeline:
|
|
| 626 |
oss_steps = list(map(int, oss_steps.split(",")))
|
| 627 |
else:
|
| 628 |
oss_steps = []
|
| 629 |
-
|
| 630 |
texts = [prompt]
|
| 631 |
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device)
|
| 632 |
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
|
|
@@ -657,32 +949,83 @@ class ACEStepPipeline:
|
|
| 657 |
preprocess_time_cost = end_time - start_time
|
| 658 |
start_time = end_time
|
| 659 |
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 686 |
|
| 687 |
end_time = time.time()
|
| 688 |
diffusion_time_cost = end_time - start_time
|
|
@@ -726,6 +1069,14 @@ class ACEStepPipeline:
|
|
| 726 |
"retake_variance": retake_variance,
|
| 727 |
"guidance_scale_text": guidance_scale_text,
|
| 728 |
"guidance_scale_lyric": guidance_scale_lyric,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
}
|
| 730 |
# save input_params_json
|
| 731 |
for output_audio_path in output_paths:
|
|
|
|
| 4 |
import re
|
| 5 |
|
| 6 |
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
from loguru import logger
|
| 9 |
from tqdm import tqdm
|
| 10 |
import json
|
|
|
|
| 23 |
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
|
| 24 |
from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward
|
| 25 |
import torchaudio
|
| 26 |
+
|
| 27 |
+
|
| 28 |
torch.backends.cudnn.benchmark = False
|
| 29 |
torch.set_float32_matmul_precision('high')
|
| 30 |
+
torch.backends.cudnn.deterministic = True
|
|
|
|
|
|
|
| 31 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 32 |
|
| 33 |
|
|
|
|
| 50 |
REPO_ID = "ACE-Step/ACE-Step-v1-3.5B"
|
| 51 |
|
| 52 |
|
| 53 |
+
# class ACEStepPipeline(DiffusionPipeline):
|
| 54 |
class ACEStepPipeline:
|
| 55 |
|
| 56 |
+
def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, torch_compile=False, **kwargs):
|
| 57 |
if checkpoint_dir is None:
|
| 58 |
if persistent_storage_path is None:
|
| 59 |
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
|
|
|
|
| 66 |
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
|
| 67 |
self.device = device
|
| 68 |
self.loaded = False
|
| 69 |
+
self.torch_compile = torch_compile
|
| 70 |
|
| 71 |
def load_checkpoint(self, checkpoint_dir=None):
|
| 72 |
device = self.device
|
|
|
|
| 160 |
self.loaded = True
|
| 161 |
|
| 162 |
# compile
|
| 163 |
+
if self.torch_compile:
|
| 164 |
+
self.music_dcae = torch.compile(self.music_dcae)
|
| 165 |
+
self.ace_step_transformer = torch.compile(self.ace_step_transformer)
|
| 166 |
+
self.text_encoder_model = torch.compile(self.text_encoder_model)
|
| 167 |
|
| 168 |
def get_text_embeddings(self, texts, device, text_max_length=256):
|
| 169 |
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
|
|
|
|
| 230 |
|
| 231 |
def get_lang(self, text):
|
| 232 |
language = "en"
|
| 233 |
+
try:
|
| 234 |
_ = self.lang_segment.getTexts(text)
|
| 235 |
langCounts = self.lang_segment.getCounts()
|
| 236 |
language = langCounts[0][0]
|
|
|
|
| 271 |
print("tokenize error", e, "for line", line, "major_language", lang)
|
| 272 |
return lyric_token_idx
|
| 273 |
|
| 274 |
+
def calc_v(
|
| 275 |
+
self,
|
| 276 |
+
zt_src,
|
| 277 |
+
zt_tar,
|
| 278 |
+
t,
|
| 279 |
+
encoder_text_hidden_states,
|
| 280 |
+
text_attention_mask,
|
| 281 |
+
target_encoder_text_hidden_states,
|
| 282 |
+
target_text_attention_mask,
|
| 283 |
+
speaker_embds,
|
| 284 |
+
target_speaker_embeds,
|
| 285 |
+
lyric_token_ids,
|
| 286 |
+
lyric_mask,
|
| 287 |
+
target_lyric_token_ids,
|
| 288 |
+
target_lyric_mask,
|
| 289 |
+
do_classifier_free_guidance=False,
|
| 290 |
+
guidance_scale=1.0,
|
| 291 |
+
target_guidance_scale=1.0,
|
| 292 |
+
cfg_type="apg",
|
| 293 |
+
attention_mask=None,
|
| 294 |
+
momentum_buffer=None,
|
| 295 |
+
momentum_buffer_tar=None,
|
| 296 |
+
return_src_pred=True
|
| 297 |
+
):
|
| 298 |
+
noise_pred_src = None
|
| 299 |
+
if return_src_pred:
|
| 300 |
+
src_latent_model_input = torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src
|
| 301 |
+
timestep = t.expand(src_latent_model_input.shape[0])
|
| 302 |
+
# source
|
| 303 |
+
noise_pred_src = self.ace_step_transformer(
|
| 304 |
+
hidden_states=src_latent_model_input,
|
| 305 |
+
attention_mask=attention_mask,
|
| 306 |
+
encoder_text_hidden_states=encoder_text_hidden_states,
|
| 307 |
+
text_attention_mask=text_attention_mask,
|
| 308 |
+
speaker_embeds=speaker_embds,
|
| 309 |
+
lyric_token_idx=lyric_token_ids,
|
| 310 |
+
lyric_mask=lyric_mask,
|
| 311 |
+
timestep=timestep,
|
| 312 |
+
).sample
|
| 313 |
+
|
| 314 |
+
if do_classifier_free_guidance:
|
| 315 |
+
noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(2)
|
| 316 |
+
if cfg_type == "apg":
|
| 317 |
+
noise_pred_src = apg_forward(
|
| 318 |
+
pred_cond=noise_pred_with_cond_src,
|
| 319 |
+
pred_uncond=noise_pred_uncond_src,
|
| 320 |
+
guidance_scale=guidance_scale,
|
| 321 |
+
momentum_buffer=momentum_buffer,
|
| 322 |
+
)
|
| 323 |
+
elif cfg_type == "cfg":
|
| 324 |
+
noise_pred_src = cfg_forward(
|
| 325 |
+
cond_output=noise_pred_with_cond_src,
|
| 326 |
+
uncond_output=noise_pred_uncond_src,
|
| 327 |
+
cfg_strength=guidance_scale,
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
tar_latent_model_input = torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar
|
| 331 |
+
timestep = t.expand(tar_latent_model_input.shape[0])
|
| 332 |
+
# target
|
| 333 |
+
noise_pred_tar = self.ace_step_transformer(
|
| 334 |
+
hidden_states=tar_latent_model_input,
|
| 335 |
+
attention_mask=attention_mask,
|
| 336 |
+
encoder_text_hidden_states=target_encoder_text_hidden_states,
|
| 337 |
+
text_attention_mask=target_text_attention_mask,
|
| 338 |
+
speaker_embeds=target_speaker_embeds,
|
| 339 |
+
lyric_token_idx=target_lyric_token_ids,
|
| 340 |
+
lyric_mask=target_lyric_mask,
|
| 341 |
+
timestep=timestep,
|
| 342 |
+
).sample
|
| 343 |
+
|
| 344 |
+
if do_classifier_free_guidance:
|
| 345 |
+
noise_pred_with_cond_tar, noise_pred_uncond_tar = noise_pred_tar.chunk(2)
|
| 346 |
+
if cfg_type == "apg":
|
| 347 |
+
noise_pred_tar = apg_forward(
|
| 348 |
+
pred_cond=noise_pred_with_cond_tar,
|
| 349 |
+
pred_uncond=noise_pred_uncond_tar,
|
| 350 |
+
guidance_scale=target_guidance_scale,
|
| 351 |
+
momentum_buffer=momentum_buffer_tar,
|
| 352 |
+
)
|
| 353 |
+
elif cfg_type == "cfg":
|
| 354 |
+
noise_pred_tar = cfg_forward(
|
| 355 |
+
cond_output=noise_pred_with_cond_tar,
|
| 356 |
+
uncond_output=noise_pred_uncond_tar,
|
| 357 |
+
cfg_strength=target_guidance_scale,
|
| 358 |
+
)
|
| 359 |
+
return noise_pred_src, noise_pred_tar
|
| 360 |
+
|
| 361 |
+
@torch.no_grad()
|
| 362 |
+
def flowedit_diffusion_process(
|
| 363 |
+
self,
|
| 364 |
+
encoder_text_hidden_states,
|
| 365 |
+
text_attention_mask,
|
| 366 |
+
speaker_embds,
|
| 367 |
+
lyric_token_ids,
|
| 368 |
+
lyric_mask,
|
| 369 |
+
target_encoder_text_hidden_states,
|
| 370 |
+
target_text_attention_mask,
|
| 371 |
+
target_speaker_embeds,
|
| 372 |
+
target_lyric_token_ids,
|
| 373 |
+
target_lyric_mask,
|
| 374 |
+
src_latents,
|
| 375 |
+
random_generators=None,
|
| 376 |
+
infer_steps=60,
|
| 377 |
+
guidance_scale=15.0,
|
| 378 |
+
n_min=0,
|
| 379 |
+
n_max=1.0,
|
| 380 |
+
n_avg=1,
|
| 381 |
+
):
|
| 382 |
+
|
| 383 |
+
do_classifier_free_guidance = True
|
| 384 |
+
if guidance_scale == 0.0 or guidance_scale == 1.0:
|
| 385 |
+
do_classifier_free_guidance = False
|
| 386 |
+
|
| 387 |
+
target_guidance_scale = guidance_scale
|
| 388 |
+
device = encoder_text_hidden_states.device
|
| 389 |
+
dtype = encoder_text_hidden_states.dtype
|
| 390 |
+
bsz = encoder_text_hidden_states.shape[0]
|
| 391 |
+
|
| 392 |
+
scheduler = FlowMatchEulerDiscreteScheduler(
|
| 393 |
+
num_train_timesteps=1000,
|
| 394 |
+
shift=3.0,
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
T_steps = infer_steps
|
| 398 |
+
frame_length = src_latents.shape[-1]
|
| 399 |
+
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
|
| 400 |
+
|
| 401 |
+
timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None)
|
| 402 |
+
|
| 403 |
+
if do_classifier_free_guidance:
|
| 404 |
+
attention_mask = torch.cat([attention_mask] * 2, dim=0)
|
| 405 |
+
|
| 406 |
+
encoder_text_hidden_states = torch.cat([encoder_text_hidden_states, torch.zeros_like(encoder_text_hidden_states)], 0)
|
| 407 |
+
text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0)
|
| 408 |
+
|
| 409 |
+
target_encoder_text_hidden_states = torch.cat([target_encoder_text_hidden_states, torch.zeros_like(target_encoder_text_hidden_states)], 0)
|
| 410 |
+
target_text_attention_mask = torch.cat([target_text_attention_mask] * 2, dim=0)
|
| 411 |
+
|
| 412 |
+
speaker_embds = torch.cat([speaker_embds, torch.zeros_like(speaker_embds)], 0)
|
| 413 |
+
target_speaker_embeds = torch.cat([target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0)
|
| 414 |
+
|
| 415 |
+
lyric_token_ids = torch.cat([lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0)
|
| 416 |
+
lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0)
|
| 417 |
+
|
| 418 |
+
target_lyric_token_ids = torch.cat([target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0)
|
| 419 |
+
target_lyric_mask = torch.cat([target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0)
|
| 420 |
+
|
| 421 |
+
momentum_buffer = MomentumBuffer()
|
| 422 |
+
momentum_buffer_tar = MomentumBuffer()
|
| 423 |
+
x_src = src_latents
|
| 424 |
+
zt_edit = x_src.clone()
|
| 425 |
+
xt_tar = None
|
| 426 |
+
n_min = int(infer_steps * n_min)
|
| 427 |
+
n_max = int(infer_steps * n_max)
|
| 428 |
+
|
| 429 |
+
logger.info("flowedit start from {} to {}".format(n_min, n_max))
|
| 430 |
+
|
| 431 |
+
for i, t in tqdm(enumerate(timesteps), total=T_steps):
|
| 432 |
+
|
| 433 |
+
if i < n_min:
|
| 434 |
+
continue
|
| 435 |
+
|
| 436 |
+
t_i = t/1000
|
| 437 |
+
|
| 438 |
+
if i+1 < len(timesteps):
|
| 439 |
+
t_im1 = (timesteps[i+1])/1000
|
| 440 |
+
else:
|
| 441 |
+
t_im1 = torch.zeros_like(t_i).to(t_i.device)
|
| 442 |
+
|
| 443 |
+
if i < n_max:
|
| 444 |
+
# Calculate the average of the V predictions
|
| 445 |
+
V_delta_avg = torch.zeros_like(x_src)
|
| 446 |
+
for k in range(n_avg):
|
| 447 |
+
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
|
| 448 |
+
|
| 449 |
+
zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise
|
| 450 |
+
|
| 451 |
+
zt_tar = zt_edit + zt_src - x_src
|
| 452 |
+
|
| 453 |
+
Vt_src, Vt_tar = self.calc_v(
|
| 454 |
+
zt_src=zt_src,
|
| 455 |
+
zt_tar=zt_tar,
|
| 456 |
+
t=t,
|
| 457 |
+
encoder_text_hidden_states=encoder_text_hidden_states,
|
| 458 |
+
text_attention_mask=text_attention_mask,
|
| 459 |
+
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
|
| 460 |
+
target_text_attention_mask=target_text_attention_mask,
|
| 461 |
+
speaker_embds=speaker_embds,
|
| 462 |
+
target_speaker_embeds=target_speaker_embeds,
|
| 463 |
+
lyric_token_ids=lyric_token_ids,
|
| 464 |
+
lyric_mask=lyric_mask,
|
| 465 |
+
target_lyric_token_ids=target_lyric_token_ids,
|
| 466 |
+
target_lyric_mask=target_lyric_mask,
|
| 467 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 468 |
+
guidance_scale=guidance_scale,
|
| 469 |
+
target_guidance_scale=target_guidance_scale,
|
| 470 |
+
attention_mask=attention_mask,
|
| 471 |
+
momentum_buffer=momentum_buffer
|
| 472 |
+
)
|
| 473 |
+
V_delta_avg += (1 / n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
|
| 474 |
+
|
| 475 |
+
# propagate direct ODE
|
| 476 |
+
zt_edit = zt_edit.to(torch.float32)
|
| 477 |
+
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
|
| 478 |
+
zt_edit = zt_edit.to(V_delta_avg.dtype)
|
| 479 |
+
else: # i >= T_steps-n_min # regular sampling for last n_min steps
|
| 480 |
+
if i == n_max:
|
| 481 |
+
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
|
| 482 |
+
scheduler._init_step_index(t)
|
| 483 |
+
sigma = scheduler.sigmas[scheduler.step_index]
|
| 484 |
+
xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src
|
| 485 |
+
xt_tar = zt_edit + xt_src - x_src
|
| 486 |
+
|
| 487 |
+
_, Vt_tar = self.calc_v(
|
| 488 |
+
zt_src=None,
|
| 489 |
+
zt_tar=xt_tar,
|
| 490 |
+
t=t,
|
| 491 |
+
encoder_text_hidden_states=encoder_text_hidden_states,
|
| 492 |
+
text_attention_mask=text_attention_mask,
|
| 493 |
+
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
|
| 494 |
+
target_text_attention_mask=target_text_attention_mask,
|
| 495 |
+
speaker_embds=speaker_embds,
|
| 496 |
+
target_speaker_embeds=target_speaker_embeds,
|
| 497 |
+
lyric_token_ids=lyric_token_ids,
|
| 498 |
+
lyric_mask=lyric_mask,
|
| 499 |
+
target_lyric_token_ids=target_lyric_token_ids,
|
| 500 |
+
target_lyric_mask=target_lyric_mask,
|
| 501 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 502 |
+
guidance_scale=guidance_scale,
|
| 503 |
+
target_guidance_scale=target_guidance_scale,
|
| 504 |
+
attention_mask=attention_mask,
|
| 505 |
+
momentum_buffer_tar=momentum_buffer_tar,
|
| 506 |
+
return_src_pred=False,
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
dtype = Vt_tar.dtype
|
| 510 |
+
xt_tar = xt_tar.to(torch.float32)
|
| 511 |
+
prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar
|
| 512 |
+
prev_sample = prev_sample.to(dtype)
|
| 513 |
+
xt_tar = prev_sample
|
| 514 |
+
|
| 515 |
+
target_latents = zt_edit if xt_tar is None else xt_tar
|
| 516 |
+
return target_latents
|
| 517 |
+
|
| 518 |
@torch.no_grad()
|
| 519 |
def text2music_diffusion_process(
|
| 520 |
self,
|
|
|
|
| 544 |
add_retake_noise=False,
|
| 545 |
guidance_scale_text=0.0,
|
| 546 |
guidance_scale_lyric=0.0,
|
| 547 |
+
repaint_start=0,
|
| 548 |
+
repaint_end=0,
|
| 549 |
+
src_latents=None,
|
| 550 |
):
|
| 551 |
|
| 552 |
logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale))
|
| 553 |
do_classifier_free_guidance = True
|
| 554 |
if guidance_scale == 0.0 or guidance_scale == 1.0:
|
| 555 |
do_classifier_free_guidance = False
|
| 556 |
+
|
| 557 |
do_double_condition_guidance = False
|
| 558 |
if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0:
|
| 559 |
do_double_condition_guidance = True
|
|
|
|
| 573 |
num_train_timesteps=1000,
|
| 574 |
shift=3.0,
|
| 575 |
)
|
| 576 |
+
|
| 577 |
frame_length = int(duration * 44100 / 512 / 8)
|
| 578 |
+
if src_latents is not None:
|
| 579 |
+
frame_length = src_latents.shape[-1]
|
| 580 |
|
| 581 |
if len(oss_steps) > 0:
|
| 582 |
infer_steps = max(oss_steps)
|
|
|
|
| 591 |
logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}")
|
| 592 |
else:
|
| 593 |
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
|
| 594 |
+
|
| 595 |
target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype)
|
| 596 |
+
|
| 597 |
+
is_repaint = False
|
| 598 |
if add_retake_noise:
|
| 599 |
retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype)
|
| 600 |
retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype)
|
| 601 |
+
repaint_start_frame = int(repaint_start * 44100 / 512 / 8)
|
| 602 |
+
repaint_end_frame = int(repaint_end * 44100 / 512 / 8)
|
| 603 |
+
|
| 604 |
+
# retake
|
| 605 |
+
is_repaint = repaint_end_frame - repaint_start_frame != frame_length
|
| 606 |
# to make sure mean = 0, std = 1
|
| 607 |
+
if not is_repaint:
|
| 608 |
+
target_latents = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
|
| 609 |
+
else:
|
| 610 |
+
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
|
| 611 |
+
repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0
|
| 612 |
+
repaint_noise = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
|
| 613 |
+
repaint_noise = torch.where(repaint_mask == 1.0, repaint_noise, target_latents)
|
| 614 |
+
z0 = repaint_noise
|
| 615 |
|
| 616 |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
|
| 617 |
+
|
| 618 |
# guidance interval
|
| 619 |
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
|
| 620 |
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
|
|
|
|
| 624 |
|
| 625 |
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
|
| 626 |
handlers = []
|
| 627 |
+
|
| 628 |
def hook(module, input, output):
|
| 629 |
output[:] *= tau
|
| 630 |
return output
|
| 631 |
+
|
| 632 |
for i in range(l_min, l_max):
|
| 633 |
handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook)
|
| 634 |
handlers.append(handler)
|
| 635 |
+
|
| 636 |
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs)
|
| 637 |
+
|
| 638 |
for hook in handlers:
|
| 639 |
hook.remove()
|
| 640 |
+
|
| 641 |
return encoder_hidden_states
|
| 642 |
|
| 643 |
# P(speaker, text, lyric)
|
|
|
|
| 670 |
torch.zeros_like(lyric_token_ids),
|
| 671 |
lyric_mask,
|
| 672 |
)
|
| 673 |
+
|
| 674 |
encoder_hidden_states_no_lyric = None
|
| 675 |
if do_double_condition_guidance:
|
| 676 |
# P(null_speaker, text, lyric_weaker)
|
|
|
|
| 697 |
|
| 698 |
def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20):
|
| 699 |
handlers = []
|
| 700 |
+
|
| 701 |
def hook(module, input, output):
|
| 702 |
output[:] *= tau
|
| 703 |
return output
|
| 704 |
+
|
| 705 |
for i in range(l_min, l_max):
|
| 706 |
handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook)
|
| 707 |
handlers.append(handler)
|
|
|
|
| 709 |
handlers.append(handler)
|
| 710 |
|
| 711 |
sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample
|
| 712 |
+
|
| 713 |
for hook in handlers:
|
| 714 |
hook.remove()
|
| 715 |
+
|
| 716 |
return sample
|
| 717 |
|
| 718 |
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
|
|
|
|
| 819 |
).sample
|
| 820 |
|
| 821 |
target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0]
|
| 822 |
+
if is_repaint:
|
| 823 |
+
t_i = t / 1000
|
| 824 |
+
x0 = src_latents
|
| 825 |
+
xt = (1 - t_i) * x0 + t_i * z0
|
| 826 |
+
target_latents = torch.where(repaint_mask == 1.0, target_latents, xt)
|
| 827 |
|
| 828 |
+
|
| 829 |
return target_latents
|
| 830 |
|
| 831 |
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="flac"):
|
|
|
|
| 844 |
def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="flac"):
|
| 845 |
if save_path is None:
|
| 846 |
logger.warning("save_path is None, using default path ./outputs/")
|
| 847 |
+
base_path = f"./outputs"
|
| 848 |
ensure_directory_exists(base_path)
|
| 849 |
else:
|
| 850 |
base_path = save_path
|
|
|
|
| 855 |
torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format)
|
| 856 |
return output_path_flac
|
| 857 |
|
| 858 |
+
def infer_latents(self, input_audio_path):
|
| 859 |
+
if input_audio_path is None:
|
| 860 |
+
return None
|
| 861 |
+
input_audio, sr = self.music_dcae.load_audio(input_audio_path)
|
| 862 |
+
input_audio = input_audio.unsqueeze(0)
|
| 863 |
+
device, dtype = self.device, self.dtype
|
| 864 |
+
input_audio = input_audio.to(device=device, dtype=dtype)
|
| 865 |
+
latents, _ = self.music_dcae.encode(input_audio, sr=sr)
|
| 866 |
+
return latents
|
| 867 |
+
|
| 868 |
def __call__(
|
| 869 |
self,
|
| 870 |
audio_duration: float = 60.0,
|
|
|
|
| 888 |
retake_seeds: list = None,
|
| 889 |
retake_variance: float = 0.5,
|
| 890 |
task: str = "text2music",
|
| 891 |
+
repaint_start: int = 0,
|
| 892 |
+
repaint_end: int = 0,
|
| 893 |
+
src_audio_path: str = None,
|
| 894 |
+
edit_target_prompt: str = None,
|
| 895 |
+
edit_target_lyrics: str = None,
|
| 896 |
+
edit_n_min: float = 0.0,
|
| 897 |
+
edit_n_max: float = 1.0,
|
| 898 |
+
edit_n_avg: int = 1,
|
| 899 |
save_path: str = None,
|
| 900 |
format: str = "flac",
|
| 901 |
batch_size: int = 1,
|
|
|
|
| 918 |
oss_steps = list(map(int, oss_steps.split(",")))
|
| 919 |
else:
|
| 920 |
oss_steps = []
|
| 921 |
+
|
| 922 |
texts = [prompt]
|
| 923 |
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device)
|
| 924 |
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
|
|
|
|
| 949 |
preprocess_time_cost = end_time - start_time
|
| 950 |
start_time = end_time
|
| 951 |
|
| 952 |
+
add_retake_noise = task in ("retake", "repaint")
|
| 953 |
+
# retake equal to repaint
|
| 954 |
+
if task == "retake":
|
| 955 |
+
repaint_start = 0
|
| 956 |
+
repaint_end = audio_duration
|
| 957 |
+
|
| 958 |
+
src_latents = None
|
| 959 |
+
if src_audio_path is not None:
|
| 960 |
+
assert src_audio_path is not None and task in ("repaint", "edit"), "src_audio_path is required for repaint task"
|
| 961 |
+
assert os.path.exists(src_audio_path), f"src_audio_path {src_audio_path} does not exist"
|
| 962 |
+
src_latents = self.infer_latents(src_audio_path)
|
| 963 |
+
|
| 964 |
+
if task == "edit":
|
| 965 |
+
texts = [edit_target_prompt]
|
| 966 |
+
target_encoder_text_hidden_states, target_text_attention_mask = self.get_text_embeddings(texts, self.device)
|
| 967 |
+
target_encoder_text_hidden_states = target_encoder_text_hidden_states.repeat(batch_size, 1, 1)
|
| 968 |
+
target_text_attention_mask = target_text_attention_mask.repeat(batch_size, 1)
|
| 969 |
+
|
| 970 |
+
target_lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
|
| 971 |
+
target_lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
|
| 972 |
+
if len(edit_target_lyrics) > 0:
|
| 973 |
+
target_lyric_token_idx = self.tokenize_lyrics(edit_target_lyrics, debug=True)
|
| 974 |
+
target_lyric_mask = [1] * len(target_lyric_token_idx)
|
| 975 |
+
target_lyric_token_idx = torch.tensor(target_lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
|
| 976 |
+
target_lyric_mask = torch.tensor(target_lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)
|
| 977 |
+
|
| 978 |
+
target_speaker_embeds = speaker_embeds.clone()
|
| 979 |
+
|
| 980 |
+
target_latents = self.flowedit_diffusion_process(
|
| 981 |
+
encoder_text_hidden_states=encoder_text_hidden_states,
|
| 982 |
+
text_attention_mask=text_attention_mask,
|
| 983 |
+
speaker_embds=speaker_embeds,
|
| 984 |
+
lyric_token_ids=lyric_token_idx,
|
| 985 |
+
lyric_mask=lyric_mask,
|
| 986 |
+
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
|
| 987 |
+
target_text_attention_mask=target_text_attention_mask,
|
| 988 |
+
target_speaker_embeds=target_speaker_embeds,
|
| 989 |
+
target_lyric_token_ids=target_lyric_token_idx,
|
| 990 |
+
target_lyric_mask=target_lyric_mask,
|
| 991 |
+
src_latents=src_latents,
|
| 992 |
+
random_generators=random_generators,
|
| 993 |
+
infer_steps=infer_step,
|
| 994 |
+
guidance_scale=guidance_scale,
|
| 995 |
+
n_min=edit_n_min,
|
| 996 |
+
n_max=edit_n_max,
|
| 997 |
+
n_avg=edit_n_avg,
|
| 998 |
+
)
|
| 999 |
+
else:
|
| 1000 |
+
target_latents = self.text2music_diffusion_process(
|
| 1001 |
+
duration=audio_duration,
|
| 1002 |
+
encoder_text_hidden_states=encoder_text_hidden_states,
|
| 1003 |
+
text_attention_mask=text_attention_mask,
|
| 1004 |
+
speaker_embds=speaker_embeds,
|
| 1005 |
+
lyric_token_ids=lyric_token_idx,
|
| 1006 |
+
lyric_mask=lyric_mask,
|
| 1007 |
+
guidance_scale=guidance_scale,
|
| 1008 |
+
omega_scale=omega_scale,
|
| 1009 |
+
infer_steps=infer_step,
|
| 1010 |
+
random_generators=random_generators,
|
| 1011 |
+
scheduler_type=scheduler_type,
|
| 1012 |
+
cfg_type=cfg_type,
|
| 1013 |
+
guidance_interval=guidance_interval,
|
| 1014 |
+
guidance_interval_decay=guidance_interval_decay,
|
| 1015 |
+
min_guidance_scale=min_guidance_scale,
|
| 1016 |
+
oss_steps=oss_steps,
|
| 1017 |
+
encoder_text_hidden_states_null=encoder_text_hidden_states_null,
|
| 1018 |
+
use_erg_lyric=use_erg_lyric,
|
| 1019 |
+
use_erg_diffusion=use_erg_diffusion,
|
| 1020 |
+
retake_random_generators=retake_random_generators,
|
| 1021 |
+
retake_variance=retake_variance,
|
| 1022 |
+
add_retake_noise=add_retake_noise,
|
| 1023 |
+
guidance_scale_text=guidance_scale_text,
|
| 1024 |
+
guidance_scale_lyric=guidance_scale_lyric,
|
| 1025 |
+
repaint_start=repaint_start,
|
| 1026 |
+
repaint_end=repaint_end,
|
| 1027 |
+
src_latents=src_latents,
|
| 1028 |
+
)
|
| 1029 |
|
| 1030 |
end_time = time.time()
|
| 1031 |
diffusion_time_cost = end_time - start_time
|
|
|
|
| 1069 |
"retake_variance": retake_variance,
|
| 1070 |
"guidance_scale_text": guidance_scale_text,
|
| 1071 |
"guidance_scale_lyric": guidance_scale_lyric,
|
| 1072 |
+
"repaint_start": repaint_start,
|
| 1073 |
+
"repaint_end": repaint_end,
|
| 1074 |
+
"edit_n_min": edit_n_min,
|
| 1075 |
+
"edit_n_max": edit_n_max,
|
| 1076 |
+
"edit_n_avg": edit_n_avg,
|
| 1077 |
+
"src_audio_path": src_audio_path,
|
| 1078 |
+
"edit_target_prompt": edit_target_prompt,
|
| 1079 |
+
"edit_target_lyrics": edit_target_lyrics,
|
| 1080 |
}
|
| 1081 |
# save input_params_json
|
| 1082 |
for output_audio_path in output_paths:
|
ui/components.py
CHANGED
|
@@ -63,15 +63,15 @@ def create_text2music_ui(
|
|
| 63 |
):
|
| 64 |
with gr.Row():
|
| 65 |
with gr.Column():
|
| 66 |
-
|
| 67 |
with gr.Row(equal_height=True):
|
|
|
|
| 68 |
audio_duration = gr.Slider(-1, 240.0, step=0.00001, value=180, label="Audio Duration", interactive=True, info="-1 means random duration (30 ~ 240).", scale=9)
|
| 69 |
sample_bnt = gr.Button("Sample", variant="primary", scale=1)
|
| 70 |
|
| 71 |
-
prompt = gr.Textbox(lines=2, label="Tags", max_lines=4, placeholder=TAG_PLACEHOLDER, info="Support tags, descriptions, and scene. Use commas to separate different tags
|
| 72 |
lyrics = gr.Textbox(lines=9, label="Lyrics", max_lines=13, placeholder=LYRIC_PLACEHOLDER, info="Support lyric structure tags like [verse], [chorus], and [bridge] to separate different parts of the lyrics.\nUse [instrumental] or [inst] to generate instrumental music. Not support genre structure tag in lyrics")
|
| 73 |
|
| 74 |
-
with gr.Accordion("Basic Settings", open=
|
| 75 |
infer_step = gr.Slider(minimum=1, maximum=1000, step=1, value=60, label="Infer Steps", interactive=True)
|
| 76 |
guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=15.0, label="Guidance Scale", interactive=True, info="When guidance_scale_lyric > 1 and guidance_scale_text > 1, the guidance scale will not be applied.")
|
| 77 |
guidance_scale_text = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=5.0, label="Guidance Scale Text", interactive=True, info="Guidance scale for text condition. It can only apply to cfg. set guidance_scale_text=5.0, guidance_scale_lyric=1.5 for start")
|
|
@@ -93,14 +93,14 @@ def create_text2music_ui(
|
|
| 93 |
min_guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=3.0, label="Min Guidance Scale", interactive=True, info="Min guidance scale for guidance interval decay's end scale")
|
| 94 |
oss_steps = gr.Textbox(label="OSS Steps", placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200", value=None, info="Optimal Steps for the generation. But not test well")
|
| 95 |
|
| 96 |
-
text2music_bnt = gr.Button(variant="primary")
|
| 97 |
|
| 98 |
with gr.Column():
|
| 99 |
outputs, input_params_json = create_output_ui()
|
| 100 |
with gr.Tab("retake"):
|
| 101 |
-
retake_variance = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance"
|
| 102 |
-
retake_seeds = gr.Textbox(label="retake seeds (default None)", placeholder="", value=None
|
| 103 |
-
retake_bnt = gr.Button(variant="primary")
|
| 104 |
retake_outputs, retake_input_params_json = create_output_ui("Retake")
|
| 105 |
|
| 106 |
def retake_process_func(json_data, retake_variance, retake_seeds):
|
|
@@ -138,9 +138,251 @@ def create_text2music_ui(
|
|
| 138 |
outputs=retake_outputs + [retake_input_params_json],
|
| 139 |
)
|
| 140 |
with gr.Tab("repainting"):
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
with gr.Tab("edit"):
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
def sample_data():
|
| 146 |
json_data = sample_data_func()
|
|
@@ -219,13 +461,12 @@ def create_main_demo_ui(
|
|
| 219 |
sample_data_func=dump_func,
|
| 220 |
):
|
| 221 |
with gr.Blocks(
|
| 222 |
-
title="
|
| 223 |
) as demo:
|
| 224 |
gr.Markdown(
|
| 225 |
"""
|
| 226 |
-
<h1 style="text-align: center;">
|
| 227 |
-
|
| 228 |
-
)
|
| 229 |
|
| 230 |
with gr.Tab("text2music"):
|
| 231 |
create_text2music_ui(
|
|
|
|
| 63 |
):
|
| 64 |
with gr.Row():
|
| 65 |
with gr.Column():
|
|
|
|
| 66 |
with gr.Row(equal_height=True):
|
| 67 |
+
# add markdown, tags and lyrics examples are from ai music generation community
|
| 68 |
audio_duration = gr.Slider(-1, 240.0, step=0.00001, value=180, label="Audio Duration", interactive=True, info="-1 means random duration (30 ~ 240).", scale=9)
|
| 69 |
sample_bnt = gr.Button("Sample", variant="primary", scale=1)
|
| 70 |
|
| 71 |
+
prompt = gr.Textbox(lines=2, label="Tags", max_lines=4, placeholder=TAG_PLACEHOLDER, info="Support tags, descriptions, and scene. Use commas to separate different tags.\ntags and lyrics examples are from ai music generation community")
|
| 72 |
lyrics = gr.Textbox(lines=9, label="Lyrics", max_lines=13, placeholder=LYRIC_PLACEHOLDER, info="Support lyric structure tags like [verse], [chorus], and [bridge] to separate different parts of the lyrics.\nUse [instrumental] or [inst] to generate instrumental music. Not support genre structure tag in lyrics")
|
| 73 |
|
| 74 |
+
with gr.Accordion("Basic Settings", open=False):
|
| 75 |
infer_step = gr.Slider(minimum=1, maximum=1000, step=1, value=60, label="Infer Steps", interactive=True)
|
| 76 |
guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=15.0, label="Guidance Scale", interactive=True, info="When guidance_scale_lyric > 1 and guidance_scale_text > 1, the guidance scale will not be applied.")
|
| 77 |
guidance_scale_text = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=5.0, label="Guidance Scale Text", interactive=True, info="Guidance scale for text condition. It can only apply to cfg. set guidance_scale_text=5.0, guidance_scale_lyric=1.5 for start")
|
|
|
|
| 93 |
min_guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=3.0, label="Min Guidance Scale", interactive=True, info="Min guidance scale for guidance interval decay's end scale")
|
| 94 |
oss_steps = gr.Textbox(label="OSS Steps", placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200", value=None, info="Optimal Steps for the generation. But not test well")
|
| 95 |
|
| 96 |
+
text2music_bnt = gr.Button("Generate", variant="primary")
|
| 97 |
|
| 98 |
with gr.Column():
|
| 99 |
outputs, input_params_json = create_output_ui()
|
| 100 |
with gr.Tab("retake"):
|
| 101 |
+
retake_variance = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance")
|
| 102 |
+
retake_seeds = gr.Textbox(label="retake seeds (default None)", placeholder="", value=None)
|
| 103 |
+
retake_bnt = gr.Button("Retake", variant="primary")
|
| 104 |
retake_outputs, retake_input_params_json = create_output_ui("Retake")
|
| 105 |
|
| 106 |
def retake_process_func(json_data, retake_variance, retake_seeds):
|
|
|
|
| 138 |
outputs=retake_outputs + [retake_input_params_json],
|
| 139 |
)
|
| 140 |
with gr.Tab("repainting"):
|
| 141 |
+
retake_variance = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance")
|
| 142 |
+
retake_seeds = gr.Textbox(label="retake seeds (default None)", placeholder="", value=None)
|
| 143 |
+
repaint_start = gr.Slider(minimum=0.0, maximum=240.0, step=0.01, value=0.0, label="Repaint Start Time", interactive=True)
|
| 144 |
+
repaint_end = gr.Slider(minimum=0.0, maximum=240.0, step=0.01, value=30.0, label="Repaint End Time", interactive=True)
|
| 145 |
+
repaint_source = gr.Radio(["text2music", "last_repaint", "upload"], value="text2music", label="Repaint Source", elem_id="repaint_source")
|
| 146 |
+
|
| 147 |
+
repaint_source_audio_upload = gr.Audio(label="Upload Audio", type="filepath", visible=False, elem_id="repaint_source_audio_upload")
|
| 148 |
+
repaint_source.change(
|
| 149 |
+
fn=lambda x: gr.update(visible=x == "upload", elem_id="repaint_source_audio_upload"),
|
| 150 |
+
inputs=[repaint_source],
|
| 151 |
+
outputs=[repaint_source_audio_upload],
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
repaint_bnt = gr.Button("Repaint", variant="primary")
|
| 155 |
+
repaint_outputs, repaint_input_params_json = create_output_ui("Repaint")
|
| 156 |
+
|
| 157 |
+
def repaint_process_func(
|
| 158 |
+
text2music_json_data,
|
| 159 |
+
repaint_json_data,
|
| 160 |
+
retake_variance,
|
| 161 |
+
retake_seeds,
|
| 162 |
+
repaint_start,
|
| 163 |
+
repaint_end,
|
| 164 |
+
repaint_source,
|
| 165 |
+
repaint_source_audio_upload,
|
| 166 |
+
prompt,
|
| 167 |
+
lyrics,
|
| 168 |
+
infer_step,
|
| 169 |
+
guidance_scale,
|
| 170 |
+
scheduler_type,
|
| 171 |
+
cfg_type,
|
| 172 |
+
omega_scale,
|
| 173 |
+
manual_seeds,
|
| 174 |
+
guidance_interval,
|
| 175 |
+
guidance_interval_decay,
|
| 176 |
+
min_guidance_scale,
|
| 177 |
+
use_erg_tag,
|
| 178 |
+
use_erg_lyric,
|
| 179 |
+
use_erg_diffusion,
|
| 180 |
+
oss_steps,
|
| 181 |
+
guidance_scale_text,
|
| 182 |
+
guidance_scale_lyric,
|
| 183 |
+
):
|
| 184 |
+
if repaint_source == "upload":
|
| 185 |
+
src_audio_path = repaint_source_audio_upload
|
| 186 |
+
json_data = text2music_json_data
|
| 187 |
+
elif repaint_source == "text2music":
|
| 188 |
+
json_data = text2music_json_data
|
| 189 |
+
src_audio_path = json_data["audio_path"]
|
| 190 |
+
elif repaint_source == "last_repaint":
|
| 191 |
+
json_data = repaint_json_data
|
| 192 |
+
src_audio_path = json_data["audio_path"]
|
| 193 |
+
|
| 194 |
+
return text2music_process_func(
|
| 195 |
+
json_data["audio_duration"],
|
| 196 |
+
prompt,
|
| 197 |
+
lyrics,
|
| 198 |
+
infer_step,
|
| 199 |
+
guidance_scale,
|
| 200 |
+
scheduler_type,
|
| 201 |
+
cfg_type,
|
| 202 |
+
omega_scale,
|
| 203 |
+
manual_seeds,
|
| 204 |
+
guidance_interval,
|
| 205 |
+
guidance_interval_decay,
|
| 206 |
+
min_guidance_scale,
|
| 207 |
+
use_erg_tag,
|
| 208 |
+
use_erg_lyric,
|
| 209 |
+
use_erg_diffusion,
|
| 210 |
+
oss_steps,
|
| 211 |
+
guidance_scale_text,
|
| 212 |
+
guidance_scale_lyric,
|
| 213 |
+
retake_seeds=retake_seeds,
|
| 214 |
+
retake_variance=retake_variance,
|
| 215 |
+
task="repaint",
|
| 216 |
+
repaint_start=repaint_start,
|
| 217 |
+
repaint_end=repaint_end,
|
| 218 |
+
src_audio_path=src_audio_path,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
repaint_bnt.click(
|
| 222 |
+
fn=repaint_process_func,
|
| 223 |
+
inputs=[
|
| 224 |
+
input_params_json,
|
| 225 |
+
repaint_input_params_json,
|
| 226 |
+
retake_variance,
|
| 227 |
+
retake_seeds,
|
| 228 |
+
repaint_start,
|
| 229 |
+
repaint_end,
|
| 230 |
+
repaint_source,
|
| 231 |
+
repaint_source_audio_upload,
|
| 232 |
+
prompt,
|
| 233 |
+
lyrics,
|
| 234 |
+
infer_step,
|
| 235 |
+
guidance_scale,
|
| 236 |
+
scheduler_type,
|
| 237 |
+
cfg_type,
|
| 238 |
+
omega_scale,
|
| 239 |
+
manual_seeds,
|
| 240 |
+
guidance_interval,
|
| 241 |
+
guidance_interval_decay,
|
| 242 |
+
min_guidance_scale,
|
| 243 |
+
use_erg_tag,
|
| 244 |
+
use_erg_lyric,
|
| 245 |
+
use_erg_diffusion,
|
| 246 |
+
oss_steps,
|
| 247 |
+
guidance_scale_text,
|
| 248 |
+
guidance_scale_lyric,
|
| 249 |
+
],
|
| 250 |
+
outputs=repaint_outputs + [repaint_input_params_json],
|
| 251 |
+
)
|
| 252 |
with gr.Tab("edit"):
|
| 253 |
+
edit_prompt = gr.Textbox(lines=2, label="Edit Tags", max_lines=4)
|
| 254 |
+
edit_lyrics = gr.Textbox(lines=9, label="Edit Lyrics", max_lines=13)
|
| 255 |
+
|
| 256 |
+
edit_type = gr.Radio(["only_lyrics", "remix"], value="only_lyrics", label="Edit Type", elem_id="edit_type", info="`only_lyrics` will keep the whole song the same except lyrics difference. Make your diffrence smaller, e.g. one lyrc line change.\nremix can change the song melody and genre")
|
| 257 |
+
edit_n_min = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.8, label="edit_n_min", interactive=True)
|
| 258 |
+
edit_n_max = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="edit_n_max", interactive=True)
|
| 259 |
+
|
| 260 |
+
def edit_type_change_func(edit_type):
|
| 261 |
+
if edit_type == "only_lyrics":
|
| 262 |
+
n_min = 0.8
|
| 263 |
+
n_max = 1.0
|
| 264 |
+
elif edit_type == "remix":
|
| 265 |
+
n_min = 0.2
|
| 266 |
+
n_max = 0.4
|
| 267 |
+
return n_min, n_max
|
| 268 |
+
|
| 269 |
+
edit_type.change(
|
| 270 |
+
edit_type_change_func,
|
| 271 |
+
inputs=[edit_type],
|
| 272 |
+
outputs=[edit_n_min, edit_n_max]
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
edit_source = gr.Radio(["text2music", "last_edit", "upload"], value="text2music", label="Edit Source", elem_id="edit_source")
|
| 276 |
+
edit_source_audio_upload = gr.Audio(label="Upload Audio", type="filepath", visible=False, elem_id="edit_source_audio_upload")
|
| 277 |
+
edit_source.change(
|
| 278 |
+
fn=lambda x: gr.update(visible=x == "upload", elem_id="edit_source_audio_upload"),
|
| 279 |
+
inputs=[edit_source],
|
| 280 |
+
outputs=[edit_source_audio_upload],
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
edit_bnt = gr.Button("Edit", variant="primary")
|
| 284 |
+
edit_outputs, edit_input_params_json = create_output_ui("Edit")
|
| 285 |
+
|
| 286 |
+
def edit_process_func(
|
| 287 |
+
text2music_json_data,
|
| 288 |
+
edit_input_params_json,
|
| 289 |
+
edit_source,
|
| 290 |
+
edit_source_audio_upload,
|
| 291 |
+
prompt,
|
| 292 |
+
lyrics,
|
| 293 |
+
edit_prompt,
|
| 294 |
+
edit_lyrics,
|
| 295 |
+
edit_n_min,
|
| 296 |
+
edit_n_max,
|
| 297 |
+
infer_step,
|
| 298 |
+
guidance_scale,
|
| 299 |
+
scheduler_type,
|
| 300 |
+
cfg_type,
|
| 301 |
+
omega_scale,
|
| 302 |
+
manual_seeds,
|
| 303 |
+
guidance_interval,
|
| 304 |
+
guidance_interval_decay,
|
| 305 |
+
min_guidance_scale,
|
| 306 |
+
use_erg_tag,
|
| 307 |
+
use_erg_lyric,
|
| 308 |
+
use_erg_diffusion,
|
| 309 |
+
oss_steps,
|
| 310 |
+
guidance_scale_text,
|
| 311 |
+
guidance_scale_lyric,
|
| 312 |
+
):
|
| 313 |
+
if edit_source == "upload":
|
| 314 |
+
src_audio_path = edit_source_audio_upload
|
| 315 |
+
json_data = text2music_json_data
|
| 316 |
+
elif edit_source == "text2music":
|
| 317 |
+
json_data = text2music_json_data
|
| 318 |
+
src_audio_path = json_data["audio_path"]
|
| 319 |
+
elif edit_source == "last_edit":
|
| 320 |
+
json_data = edit_input_params_json
|
| 321 |
+
src_audio_path = json_data["audio_path"]
|
| 322 |
+
|
| 323 |
+
if not edit_prompt:
|
| 324 |
+
edit_prompt = prompt
|
| 325 |
+
if not edit_lyrics:
|
| 326 |
+
edit_lyrics = lyrics
|
| 327 |
+
|
| 328 |
+
return text2music_process_func(
|
| 329 |
+
json_data["audio_duration"],
|
| 330 |
+
prompt,
|
| 331 |
+
lyrics,
|
| 332 |
+
infer_step,
|
| 333 |
+
guidance_scale,
|
| 334 |
+
scheduler_type,
|
| 335 |
+
cfg_type,
|
| 336 |
+
omega_scale,
|
| 337 |
+
manual_seeds,
|
| 338 |
+
guidance_interval,
|
| 339 |
+
guidance_interval_decay,
|
| 340 |
+
min_guidance_scale,
|
| 341 |
+
use_erg_tag,
|
| 342 |
+
use_erg_lyric,
|
| 343 |
+
use_erg_diffusion,
|
| 344 |
+
oss_steps,
|
| 345 |
+
guidance_scale_text,
|
| 346 |
+
guidance_scale_lyric,
|
| 347 |
+
task="edit",
|
| 348 |
+
src_audio_path=src_audio_path,
|
| 349 |
+
edit_target_prompt=edit_prompt,
|
| 350 |
+
edit_target_lyrics=edit_lyrics,
|
| 351 |
+
edit_n_min=edit_n_min,
|
| 352 |
+
edit_n_max=edit_n_max
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
edit_bnt.click(
|
| 356 |
+
fn=edit_process_func,
|
| 357 |
+
inputs=[
|
| 358 |
+
input_params_json,
|
| 359 |
+
edit_input_params_json,
|
| 360 |
+
edit_source,
|
| 361 |
+
edit_source_audio_upload,
|
| 362 |
+
prompt,
|
| 363 |
+
lyrics,
|
| 364 |
+
edit_prompt,
|
| 365 |
+
edit_lyrics,
|
| 366 |
+
edit_n_min,
|
| 367 |
+
edit_n_max,
|
| 368 |
+
infer_step,
|
| 369 |
+
guidance_scale,
|
| 370 |
+
scheduler_type,
|
| 371 |
+
cfg_type,
|
| 372 |
+
omega_scale,
|
| 373 |
+
manual_seeds,
|
| 374 |
+
guidance_interval,
|
| 375 |
+
guidance_interval_decay,
|
| 376 |
+
min_guidance_scale,
|
| 377 |
+
use_erg_tag,
|
| 378 |
+
use_erg_lyric,
|
| 379 |
+
use_erg_diffusion,
|
| 380 |
+
oss_steps,
|
| 381 |
+
guidance_scale_text,
|
| 382 |
+
guidance_scale_lyric,
|
| 383 |
+
],
|
| 384 |
+
outputs=edit_outputs + [edit_input_params_json],
|
| 385 |
+
)
|
| 386 |
|
| 387 |
def sample_data():
|
| 388 |
json_data = sample_data_func()
|
|
|
|
| 461 |
sample_data_func=dump_func,
|
| 462 |
):
|
| 463 |
with gr.Blocks(
|
| 464 |
+
title="ACE-Step Model 1.0 DEMO",
|
| 465 |
) as demo:
|
| 466 |
gr.Markdown(
|
| 467 |
"""
|
| 468 |
+
<h1 style="text-align: center;">ACE-Step: A Step Towards Music Generation Foundation Model</h1>
|
| 469 |
+
""")
|
|
|
|
| 470 |
|
| 471 |
with gr.Tab("text2music"):
|
| 472 |
create_text2music_ui(
|