Spaces:
Runtime error
Runtime error
| import nltk | |
| import librosa | |
| import torch | |
| import gradio as gr | |
| from pyctcdecode import build_ctcdecoder | |
| from transformers import AutoProcessor, AutoModelForCTC | |
| nltk.download("punkt") | |
| model_name = "facebook/wav2vec2-base-960h" | |
| processor = AutoProcessor.from_pretrained(model_name) | |
| model = AutoModelForCTC.from_pretrained(model_name) | |
| def load_and_fix_data(input_file): | |
| #read the file | |
| speech, sample_rate = librosa.load(input_file) | |
| #make it 1D | |
| if len(speech.shape) > 1: | |
| speech = speech[:,0] + speech[:,1] | |
| #resampling to 16KHz | |
| if sample_rate !=16000: | |
| speech = librosa.resample(speech, sample_rate,16000) | |
| return speech | |
| def fix_transcription_casing(input_sentence): | |
| sentences = nltk.sent_tokenize(input_sentence) | |
| return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) | |
| def predict_and_ctc_decode(input_file): | |
| speech = load_and_fix_data(input_file) | |
| input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values | |
| logits = model(input_values).logits.cpu().detach().numpy()[0] | |
| vocab_list = list(processor.tokenizer.get_vocab().keys()) | |
| decoder = build_ctcdecoder(vocab_list) | |
| pred = decoder.decode(logits) | |
| transcribed_text = fix_transcription_casing(pred.lower()) | |
| return transcribed_text | |
| def predict_and_greedy_decode(input_file): | |
| speech = load_and_fix_data(input_file) | |
| input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values | |
| logits = model(input_values).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| pred = processor.batch_decode(predicted_ids) | |
| transcribed_text = fix_transcription_casing(pred[0].lower()) | |
| return transcribed_text | |
| def return_all_predictions(input_file, model_name): | |
| print(model_name) | |
| return predict_and_ctc_decode(input_file), predict_and_greedy_decode(input_file) | |
| gr.Interface(return_all_predictions, | |
| inputs = [gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record/ Drop audio"), gr.inputs.Dropdown(["facebook/wav2vec2-base-960h", "facebook/hubert-large-ls960-ft"])], | |
| outputs = [gr.outputs.Textbox(label="Beam CTC Decoding"), gr.outputs.Textbox(label="Greedy Decoding")], | |
| title="ASR using Wav2Vec 2.0 & pyctcdecode", | |
| description = "Extending HF ASR models with pyctcdecode decoder", | |
| layout = "horizontal", | |
| examples = [["test.wav"]], theme="huggingface").launch() |