Spaces:
Running
on
Zero
Running
on
Zero
Update gen2seg_sd_pipeline.py
Browse files- gen2seg_sd_pipeline.py +4 -4
gen2seg_sd_pipeline.py
CHANGED
|
@@ -50,7 +50,7 @@ def zeros_tensor(
|
|
| 50 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 51 |
|
| 52 |
@dataclass
|
| 53 |
-
class
|
| 54 |
"""
|
| 55 |
Output class for gen2seg Instance Segmentation prediction pipeline.
|
| 56 |
|
|
@@ -67,7 +67,7 @@ class Gen2SegSDSegOutput(BaseOutput):
|
|
| 67 |
latent: Union[None, torch.Tensor]
|
| 68 |
|
| 69 |
|
| 70 |
-
class
|
| 71 |
"""
|
| 72 |
# add
|
| 73 |
Pipeline for Instance Segmentation prediction using our Stable Diffusion model.
|
|
@@ -251,7 +251,7 @@ class Gen2SegSDPipeline(DiffusionPipeline):
|
|
| 251 |
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
|
| 252 |
`latents` argument.
|
| 253 |
return_dict (`bool`, *optional*, defaults to `True`):
|
| 254 |
-
Whether or not to return a [`
|
| 255 |
|
| 256 |
# add
|
| 257 |
E2E FT models are deterministic single step models involving no ensembling, i.e. E=1.
|
|
@@ -397,7 +397,7 @@ class Gen2SegSDPipeline(DiffusionPipeline):
|
|
| 397 |
if not return_dict:
|
| 398 |
return (prediction, pred_latent)
|
| 399 |
|
| 400 |
-
return
|
| 401 |
prediction=prediction,
|
| 402 |
latent=pred_latent,
|
| 403 |
)
|
|
|
|
| 50 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 51 |
|
| 52 |
@dataclass
|
| 53 |
+
class gen2segSDSegOutput(BaseOutput):
|
| 54 |
"""
|
| 55 |
Output class for gen2seg Instance Segmentation prediction pipeline.
|
| 56 |
|
|
|
|
| 67 |
latent: Union[None, torch.Tensor]
|
| 68 |
|
| 69 |
|
| 70 |
+
class gen2segSDPipeline(DiffusionPipeline):
|
| 71 |
"""
|
| 72 |
# add
|
| 73 |
Pipeline for Instance Segmentation prediction using our Stable Diffusion model.
|
|
|
|
| 251 |
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
|
| 252 |
`latents` argument.
|
| 253 |
return_dict (`bool`, *optional*, defaults to `True`):
|
| 254 |
+
Whether or not to return a [`gen2segSDSegOutput`] instead of a plain tuple.
|
| 255 |
|
| 256 |
# add
|
| 257 |
E2E FT models are deterministic single step models involving no ensembling, i.e. E=1.
|
|
|
|
| 397 |
if not return_dict:
|
| 398 |
return (prediction, pred_latent)
|
| 399 |
|
| 400 |
+
return gen2segSDSegOutput(
|
| 401 |
prediction=prediction,
|
| 402 |
latent=pred_latent,
|
| 403 |
)
|