Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,280 +1,280 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import numpy as np
|
| 5 |
-
import time
|
| 6 |
-
import os
|
| 7 |
-
|
| 8 |
-
# --- Import Custom Pipelines ---
|
| 9 |
-
# Ensure these files are in the same directory or accessible in PYTHONPATH
|
| 10 |
-
try:
|
| 11 |
-
from gen2seg_sd_pipeline import gen2segSDPipeline
|
| 12 |
-
from gen2seg_mae_pipeline import gen2segMAEInstancePipeline
|
| 13 |
-
except ImportError as e:
|
| 14 |
-
print(f"Error importing pipeline modules: {e}")
|
| 15 |
-
print("Please ensure gen2seg_sd_pipeline.py and gen2seg_mae_pipeline.py are in the same directory.")
|
| 16 |
-
# Optionally, raise an error or exit if pipelines are critical at startup
|
| 17 |
-
# raise ImportError("Could not import custom pipeline modules. Check file paths.") from e
|
| 18 |
-
|
| 19 |
-
from transformers import ViTMAEForPreTraining, AutoImageProcessor
|
| 20 |
-
|
| 21 |
-
# --- Configuration ---
|
| 22 |
-
MODEL_IDS = {
|
| 23 |
-
"SD": "reachomk/gen2seg-sd",
|
| 24 |
-
"MAE-H": "reachomk/gen2seg-mae-h"
|
| 25 |
-
}
|
| 26 |
-
|
| 27 |
-
# Check if a GPU is available and set the device accordingly
|
| 28 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
-
print(f"Using device: {DEVICE}")
|
| 30 |
-
|
| 31 |
-
# --- Global Variables for Caching Pipelines ---
|
| 32 |
-
sd_pipe_global = None
|
| 33 |
-
mae_pipe_global = None
|
| 34 |
-
|
| 35 |
-
# --- Model Loading Functions ---
|
| 36 |
-
def get_sd_pipeline():
|
| 37 |
-
"""Loads and caches the gen2seg Stable Diffusion pipeline."""
|
| 38 |
-
global sd_pipe_global
|
| 39 |
-
if sd_pipe_global is None:
|
| 40 |
-
model_id_sd = MODEL_IDS["SD"]
|
| 41 |
-
print(f"Attempting to load SD pipeline from Hugging Face Hub: {model_id_sd}")
|
| 42 |
-
try:
|
| 43 |
-
sd_pipe_global = gen2segSDPipeline.from_pretrained(
|
| 44 |
-
model_id_sd,
|
| 45 |
-
use_safetensors=True,
|
| 46 |
-
# torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32, # Optional: use float16 on GPU
|
| 47 |
-
).to(DEVICE)
|
| 48 |
-
print(f"SD Pipeline loaded successfully from {model_id_sd} on {DEVICE}.")
|
| 49 |
-
except Exception as e:
|
| 50 |
-
print(f"Error loading SD pipeline from Hugging Face Hub ({model_id_sd}): {e}")
|
| 51 |
-
sd_pipe_global = None # Ensure it remains None on failure
|
| 52 |
-
# Do not raise gr.Error here; let the main function handle it.
|
| 53 |
-
return sd_pipe_global
|
| 54 |
-
|
| 55 |
-
def get_mae_pipeline():
|
| 56 |
-
"""Loads and caches the gen2seg MAE-H pipeline."""
|
| 57 |
-
global mae_pipe_global
|
| 58 |
-
if mae_pipe_global is None:
|
| 59 |
-
model_id_mae = MODEL_IDS["MAE-H"]
|
| 60 |
-
print(f"Loading MAE-H pipeline with model {model_id_mae} on {DEVICE}...")
|
| 61 |
-
try:
|
| 62 |
-
model = ViTMAEForPreTraining.from_pretrained(model_id_mae)
|
| 63 |
-
model.to(DEVICE)
|
| 64 |
-
model.eval() # Set to evaluation mode
|
| 65 |
-
|
| 66 |
-
# Load the official MAE-H image processor
|
| 67 |
-
# Using "facebook/vit-mae-huge" as per the original app_mae.py
|
| 68 |
-
image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-huge")
|
| 69 |
-
|
| 70 |
-
mae_pipe_global = gen2segMAEInstancePipeline(model=model, image_processor=image_processor)
|
| 71 |
-
# The custom MAE pipeline's model is already on the DEVICE.
|
| 72 |
-
print(f"MAE-H Pipeline with model {model_id_mae} loaded successfully on {DEVICE}.")
|
| 73 |
-
except Exception as e:
|
| 74 |
-
print(f"Error loading MAE-H model or pipeline from Hugging Face Hub ({model_id_mae}): {e}")
|
| 75 |
-
mae_pipe_global = None # Ensure it remains None on failure
|
| 76 |
-
# Do not raise gr.Error here; let the main function handle it.
|
| 77 |
-
return mae_pipe_global
|
| 78 |
-
|
| 79 |
-
# --- Unified Prediction Function ---
|
| 80 |
-
def segment_image(input_image: Image.Image, model_choice: str) -> Image.Image:
|
| 81 |
-
"""
|
| 82 |
-
Takes a PIL Image and model choice, performs segmentation, and returns the segmented image.
|
| 83 |
-
"""
|
| 84 |
-
if input_image is None:
|
| 85 |
-
raise gr.Error("No image provided. Please upload an image.")
|
| 86 |
-
|
| 87 |
-
print(f"Model selected: {model_choice}")
|
| 88 |
-
# Ensure image is in RGB format
|
| 89 |
-
image_rgb = input_image.convert("RGB")
|
| 90 |
-
original_resolution = image_rgb.size # (width, height)
|
| 91 |
-
seg_array = None
|
| 92 |
-
|
| 93 |
-
try:
|
| 94 |
-
if model_choice == "SD":
|
| 95 |
-
pipe_sd = get_sd_pipeline()
|
| 96 |
-
if pipe_sd is None:
|
| 97 |
-
raise gr.Error("The SD segmentation pipeline could not be loaded. "
|
| 98 |
-
"Please check the Space logs for more details, or try again later.")
|
| 99 |
-
|
| 100 |
-
print(f"Running SD inference with image size: {image_rgb.size}")
|
| 101 |
-
start_time = time.time()
|
| 102 |
-
with torch.no_grad():
|
| 103 |
-
# The gen2segSDPipeline expects a single image or a list
|
| 104 |
-
# The pipeline's __call__ method handles preprocessing internally
|
| 105 |
-
seg_output = pipe_sd(image_rgb, match_input_resolution=False).prediction # Output is before resize
|
| 106 |
-
|
| 107 |
-
# seg_output is expected to be a numpy array (N,H,W,1) or (N,1,H,W) or tensor
|
| 108 |
-
# Based on gen2seg_sd_pipeline.py, if output_type="np" (default), it's [N,H,W,1]
|
| 109 |
-
# If output_type="pt", it's [N,1,H,W]
|
| 110 |
-
# The original app_sd.py converted tensor to numpy and squeezed.
|
| 111 |
-
if isinstance(seg_output, torch.Tensor):
|
| 112 |
-
seg_output = seg_output.cpu().numpy()
|
| 113 |
-
|
| 114 |
-
if seg_output.ndim == 4 and seg_output.shape[0] == 1: # Batch size 1
|
| 115 |
-
if seg_output.shape[1] == 1: # Grayscale, (1, 1, H, W)
|
| 116 |
-
seg_array = seg_output.squeeze(0).squeeze(0).astype(np.uint8)
|
| 117 |
-
elif seg_output.shape[-1] == 1: # Grayscale, (1, H, W, 1)
|
| 118 |
-
seg_array = seg_output.squeeze(0).squeeze(-1).astype(np.uint8)
|
| 119 |
-
elif seg_output.shape[1] == 3: # RGB, (1, 3, H, W) -> (H, W, 3)
|
| 120 |
-
seg_array = np.transpose(seg_output.squeeze(0), (1, 2, 0)).astype(np.uint8)
|
| 121 |
-
elif seg_output.shape[-1] == 3: # RGB, (1, H, W, 3)
|
| 122 |
-
seg_array = seg_output.squeeze(0).astype(np.uint8)
|
| 123 |
-
else: # Fallback for unexpected shapes
|
| 124 |
-
seg_array = seg_output.squeeze().astype(np.uint8)
|
| 125 |
-
|
| 126 |
-
elif seg_output.ndim == 3: # (H, W, C) or (C, H, W)
|
| 127 |
-
seg_array = seg_output.astype(np.uint8)
|
| 128 |
-
elif seg_output.ndim == 2: # (H,W)
|
| 129 |
-
seg_array = seg_output.astype(np.uint8)
|
| 130 |
-
else:
|
| 131 |
-
raise TypeError(f"Unexpected SD segmentation output type/shape: {type(seg_output)}, {seg_output.shape}")
|
| 132 |
-
end_time = time.time()
|
| 133 |
-
print(f"SD Inference completed in {end_time - start_time:.2f} seconds.")
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
elif model_choice == "MAE-H":
|
| 137 |
-
pipe_mae = get_mae_pipeline()
|
| 138 |
-
if pipe_mae is None:
|
| 139 |
-
raise gr.Error("The MAE-H segmentation pipeline could not be loaded. "
|
| 140 |
-
"Please check the Space logs for more details, or try again later.")
|
| 141 |
-
|
| 142 |
-
print(f"Running MAE-H inference with image size: {image_rgb.size}")
|
| 143 |
-
start_time = time.time()
|
| 144 |
-
with torch.no_grad():
|
| 145 |
-
# The gen2segMAEInstancePipeline expects a list of images
|
| 146 |
-
# output_type="np" returns a NumPy array
|
| 147 |
-
pipe_output = pipe_mae([image_rgb], output_type="np")
|
| 148 |
-
# Prediction is (batch_size, height, width, 3) for MAE
|
| 149 |
-
prediction_np = pipe_output.prediction[0] # Get the first (and only) image prediction
|
| 150 |
-
|
| 151 |
-
end_time = time.time()
|
| 152 |
-
print(f"MAE-H Inference completed in {end_time - start_time:.2f} seconds.")
|
| 153 |
-
|
| 154 |
-
if not isinstance(prediction_np, np.ndarray):
|
| 155 |
-
# This case should ideally not be reached if output_type="np"
|
| 156 |
-
prediction_np = prediction_np.cpu().numpy()
|
| 157 |
-
|
| 158 |
-
# Ensure it's in the expected (H, W, C) format and uint8
|
| 159 |
-
if prediction_np.ndim == 3 and prediction_np.shape[-1] == 3: # Expected (H, W, 3)
|
| 160 |
-
seg_array = prediction_np.astype(np.uint8)
|
| 161 |
-
else:
|
| 162 |
-
# Attempt to handle other shapes if necessary, or raise error
|
| 163 |
-
raise gr.Error(f"Unexpected MAE-H prediction shape: {prediction_np.shape}. Expected (H, W, 3).")
|
| 164 |
-
|
| 165 |
-
# The MAE pipeline already does gamma correction and scaling to 0-255.
|
| 166 |
-
# It also ensures 3 channels.
|
| 167 |
-
|
| 168 |
-
else:
|
| 169 |
-
raise gr.Error(f"Invalid model choice: {model_choice}. Please select a valid model.")
|
| 170 |
-
|
| 171 |
-
if seg_array is None:
|
| 172 |
-
raise gr.Error("Segmentation array was not generated. An unknown error occurred.")
|
| 173 |
-
|
| 174 |
-
print(f"Segmentation array generated with shape: {seg_array.shape}, dtype: {seg_array.dtype}")
|
| 175 |
-
|
| 176 |
-
# Convert numpy array to PIL Image
|
| 177 |
-
# Handle grayscale or RGB based on seg_array channels
|
| 178 |
-
if seg_array.ndim == 2: # Grayscale
|
| 179 |
-
segmented_image_pil = Image.fromarray(seg_array, mode='L')
|
| 180 |
-
elif seg_array.ndim == 3 and seg_array.shape[-1] == 3: # RGB
|
| 181 |
-
segmented_image_pil = Image.fromarray(seg_array, mode='RGB')
|
| 182 |
-
elif seg_array.ndim == 3 and seg_array.shape[-1] == 1: # Grayscale with channel dim
|
| 183 |
-
segmented_image_pil = Image.fromarray(seg_array.squeeze(-1), mode='L')
|
| 184 |
-
else:
|
| 185 |
-
raise gr.Error(f"Cannot convert seg_array with shape {seg_array.shape} to PIL Image.")
|
| 186 |
-
|
| 187 |
-
# Resize back to original image resolution using LANCZOS for high quality
|
| 188 |
-
segmented_image_pil = segmented_image_pil.resize(original_resolution, Image.Resampling.LANCZOS)
|
| 189 |
-
|
| 190 |
-
print(f"Segmented image processed. Output size: {segmented_image_pil.size}, mode: {segmented_image_pil.mode}")
|
| 191 |
-
return segmented_image_pil
|
| 192 |
-
|
| 193 |
-
except Exception as e:
|
| 194 |
-
print(f"Error during segmentation with {model_choice}: {e}")
|
| 195 |
-
# Re-raise as gr.Error for Gradio to display, if not already one
|
| 196 |
-
if not isinstance(e, gr.Error):
|
| 197 |
-
# It's often helpful to include the type of the original exception
|
| 198 |
-
error_type = type(e).__name__
|
| 199 |
-
raise gr.Error(f"An error occurred during segmentation: {error_type} - {str(e)}")
|
| 200 |
-
else:
|
| 201 |
-
raise e # Re-raise if it's already a gr.Error
|
| 202 |
-
|
| 203 |
-
# --- Gradio Interface ---
|
| 204 |
-
title = "gen2seg: Generative Models Enable Generalizable Instance Segmentation Demo (SD & MAE-H)"
|
| 205 |
-
description = f"""
|
| 206 |
-
<div style="text-align: center; font-family: 'Arial', sans-serif;">
|
| 207 |
-
<p>Upload an image and choose a model architecture to see the instance segmentation result generated by the respective model. </p>
|
| 208 |
-
<p>
|
| 209 |
-
Currently, inference is running on CPU.
|
| 210 |
-
Performance will be significantly better on GPU.
|
| 211 |
-
</p>
|
| 212 |
-
<ul>
|
| 213 |
-
<li><strong>SD</strong>: Based on Stable Diffusion 2.
|
| 214 |
-
<a href="https://huggingface.co/{MODEL_IDS['SD']}" target="_blank">Model Link</a>.
|
| 215 |
-
<em>Approx. CPU inference time: ~1-2 minutes per image.</em>
|
| 216 |
-
</li>
|
| 217 |
-
<li><strong>MAE-H</strong>: Based on Masked Autoencoder (Huge).
|
| 218 |
-
<a href="https://huggingface.co/{MODEL_IDS['MAE-H']}" target="_blank">Model Link</a>.
|
| 219 |
-
<em>Approx. CPU inference time: ~15-45 seconds per image.</em>
|
| 220 |
-
If you experience tokenizer artifacts or very dark images, you can use gamma correction to handle this.
|
| 221 |
-
</li>
|
| 222 |
-
</ul>
|
| 223 |
-
<p>
|
| 224 |
-
For faster inference, please check out our GitHub to run the models locally on a GPU:
|
| 225 |
-
<a href="https://github.com/UCDvision/gen2seg" target="_blank">https://github.com/UCDvision/gen2seg</a>
|
| 226 |
-
</p>
|
| 227 |
-
<p>If the demo experiences issues, please open an issue on our GitHub.</p>
|
| 228 |
-
<p> If you have not already, please see our webpage at <a href="https://reachomk.github.io/gen2seg" target="_blank">https://reachomk.github.io/gen2seg</a>
|
| 229 |
-
|
| 230 |
-
</div>
|
| 231 |
-
"""
|
| 232 |
-
|
| 233 |
-
article = """
|
| 234 |
-
"""
|
| 235 |
-
|
| 236 |
-
# Define Gradio inputs
|
| 237 |
-
input_image_component = gr.Image(type="pil", label="Input Image")
|
| 238 |
-
model_choice_component = gr.Dropdown(
|
| 239 |
-
choices=list(MODEL_IDS.keys()),
|
| 240 |
-
value="SD", # Default model
|
| 241 |
-
label="Choose Segmentation Model Architecture"
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
# Define Gradio output
|
| 245 |
-
output_image_component = gr.Image(type="pil", label="Segmented Image")
|
| 246 |
-
|
| 247 |
-
# Example images (ensure these paths are correct if you upload examples to your Space)
|
| 248 |
-
# For example, if you create an "examples" folder in your Space repo:
|
| 249 |
-
# example_paths = [
|
| 250 |
-
# os.path.join("examples", "example1.jpg"),
|
| 251 |
-
# os.path.join("examples", "example2.png")
|
| 252 |
-
# ]
|
| 253 |
-
# Filter out non-existent example files to prevent errors
|
| 254 |
-
# example_paths = [ex for ex in example_paths if os.path.exists(ex)]
|
| 255 |
-
example_paths = [] # Add paths to example images here if you have them
|
| 256 |
-
|
| 257 |
-
iface = gr.Interface(
|
| 258 |
-
fn=segment_image,
|
| 259 |
-
inputs=[input_image_component, model_choice_component],
|
| 260 |
-
outputs=output_image_component,
|
| 261 |
-
title=title,
|
| 262 |
-
description=description,
|
| 263 |
-
article=article,
|
| 264 |
-
examples=example_paths if example_paths else None, # Pass None if no examples
|
| 265 |
-
allow_flagging="never",
|
| 266 |
-
theme=
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
if __name__ == "__main__":
|
| 270 |
-
# Optional: Pre-load a default model on startup if desired.
|
| 271 |
-
# This can make the first inference faster but increases startup time.
|
| 272 |
-
# print("Attempting to pre-load default SD model on startup...")
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
print("Launching Gradio interface...")
|
| 280 |
-
iface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import time
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# --- Import Custom Pipelines ---
|
| 9 |
+
# Ensure these files are in the same directory or accessible in PYTHONPATH
|
| 10 |
+
try:
|
| 11 |
+
from gen2seg_sd_pipeline import gen2segSDPipeline
|
| 12 |
+
from gen2seg_mae_pipeline import gen2segMAEInstancePipeline
|
| 13 |
+
except ImportError as e:
|
| 14 |
+
print(f"Error importing pipeline modules: {e}")
|
| 15 |
+
print("Please ensure gen2seg_sd_pipeline.py and gen2seg_mae_pipeline.py are in the same directory.")
|
| 16 |
+
# Optionally, raise an error or exit if pipelines are critical at startup
|
| 17 |
+
# raise ImportError("Could not import custom pipeline modules. Check file paths.") from e
|
| 18 |
+
|
| 19 |
+
from transformers import ViTMAEForPreTraining, AutoImageProcessor
|
| 20 |
+
|
| 21 |
+
# --- Configuration ---
|
| 22 |
+
MODEL_IDS = {
|
| 23 |
+
"SD": "reachomk/gen2seg-sd",
|
| 24 |
+
"MAE-H": "reachomk/gen2seg-mae-h"
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
# Check if a GPU is available and set the device accordingly
|
| 28 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
print(f"Using device: {DEVICE}")
|
| 30 |
+
|
| 31 |
+
# --- Global Variables for Caching Pipelines ---
|
| 32 |
+
sd_pipe_global = None
|
| 33 |
+
mae_pipe_global = None
|
| 34 |
+
|
| 35 |
+
# --- Model Loading Functions ---
|
| 36 |
+
def get_sd_pipeline():
|
| 37 |
+
"""Loads and caches the gen2seg Stable Diffusion pipeline."""
|
| 38 |
+
global sd_pipe_global
|
| 39 |
+
if sd_pipe_global is None:
|
| 40 |
+
model_id_sd = MODEL_IDS["SD"]
|
| 41 |
+
print(f"Attempting to load SD pipeline from Hugging Face Hub: {model_id_sd}")
|
| 42 |
+
try:
|
| 43 |
+
sd_pipe_global = gen2segSDPipeline.from_pretrained(
|
| 44 |
+
model_id_sd,
|
| 45 |
+
use_safetensors=True,
|
| 46 |
+
# torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32, # Optional: use float16 on GPU
|
| 47 |
+
).to(DEVICE)
|
| 48 |
+
print(f"SD Pipeline loaded successfully from {model_id_sd} on {DEVICE}.")
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Error loading SD pipeline from Hugging Face Hub ({model_id_sd}): {e}")
|
| 51 |
+
sd_pipe_global = None # Ensure it remains None on failure
|
| 52 |
+
# Do not raise gr.Error here; let the main function handle it.
|
| 53 |
+
return sd_pipe_global
|
| 54 |
+
|
| 55 |
+
def get_mae_pipeline():
|
| 56 |
+
"""Loads and caches the gen2seg MAE-H pipeline."""
|
| 57 |
+
global mae_pipe_global
|
| 58 |
+
if mae_pipe_global is None:
|
| 59 |
+
model_id_mae = MODEL_IDS["MAE-H"]
|
| 60 |
+
print(f"Loading MAE-H pipeline with model {model_id_mae} on {DEVICE}...")
|
| 61 |
+
try:
|
| 62 |
+
model = ViTMAEForPreTraining.from_pretrained(model_id_mae)
|
| 63 |
+
model.to(DEVICE)
|
| 64 |
+
model.eval() # Set to evaluation mode
|
| 65 |
+
|
| 66 |
+
# Load the official MAE-H image processor
|
| 67 |
+
# Using "facebook/vit-mae-huge" as per the original app_mae.py
|
| 68 |
+
image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-huge")
|
| 69 |
+
|
| 70 |
+
mae_pipe_global = gen2segMAEInstancePipeline(model=model, image_processor=image_processor)
|
| 71 |
+
# The custom MAE pipeline's model is already on the DEVICE.
|
| 72 |
+
print(f"MAE-H Pipeline with model {model_id_mae} loaded successfully on {DEVICE}.")
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Error loading MAE-H model or pipeline from Hugging Face Hub ({model_id_mae}): {e}")
|
| 75 |
+
mae_pipe_global = None # Ensure it remains None on failure
|
| 76 |
+
# Do not raise gr.Error here; let the main function handle it.
|
| 77 |
+
return mae_pipe_global
|
| 78 |
+
|
| 79 |
+
# --- Unified Prediction Function ---
|
| 80 |
+
def segment_image(input_image: Image.Image, model_choice: str) -> Image.Image:
|
| 81 |
+
"""
|
| 82 |
+
Takes a PIL Image and model choice, performs segmentation, and returns the segmented image.
|
| 83 |
+
"""
|
| 84 |
+
if input_image is None:
|
| 85 |
+
raise gr.Error("No image provided. Please upload an image.")
|
| 86 |
+
|
| 87 |
+
print(f"Model selected: {model_choice}")
|
| 88 |
+
# Ensure image is in RGB format
|
| 89 |
+
image_rgb = input_image.convert("RGB")
|
| 90 |
+
original_resolution = image_rgb.size # (width, height)
|
| 91 |
+
seg_array = None
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
if model_choice == "SD":
|
| 95 |
+
pipe_sd = get_sd_pipeline()
|
| 96 |
+
if pipe_sd is None:
|
| 97 |
+
raise gr.Error("The SD segmentation pipeline could not be loaded. "
|
| 98 |
+
"Please check the Space logs for more details, or try again later.")
|
| 99 |
+
|
| 100 |
+
print(f"Running SD inference with image size: {image_rgb.size}")
|
| 101 |
+
start_time = time.time()
|
| 102 |
+
with torch.no_grad():
|
| 103 |
+
# The gen2segSDPipeline expects a single image or a list
|
| 104 |
+
# The pipeline's __call__ method handles preprocessing internally
|
| 105 |
+
seg_output = pipe_sd(image_rgb, match_input_resolution=False).prediction # Output is before resize
|
| 106 |
+
|
| 107 |
+
# seg_output is expected to be a numpy array (N,H,W,1) or (N,1,H,W) or tensor
|
| 108 |
+
# Based on gen2seg_sd_pipeline.py, if output_type="np" (default), it's [N,H,W,1]
|
| 109 |
+
# If output_type="pt", it's [N,1,H,W]
|
| 110 |
+
# The original app_sd.py converted tensor to numpy and squeezed.
|
| 111 |
+
if isinstance(seg_output, torch.Tensor):
|
| 112 |
+
seg_output = seg_output.cpu().numpy()
|
| 113 |
+
|
| 114 |
+
if seg_output.ndim == 4 and seg_output.shape[0] == 1: # Batch size 1
|
| 115 |
+
if seg_output.shape[1] == 1: # Grayscale, (1, 1, H, W)
|
| 116 |
+
seg_array = seg_output.squeeze(0).squeeze(0).astype(np.uint8)
|
| 117 |
+
elif seg_output.shape[-1] == 1: # Grayscale, (1, H, W, 1)
|
| 118 |
+
seg_array = seg_output.squeeze(0).squeeze(-1).astype(np.uint8)
|
| 119 |
+
elif seg_output.shape[1] == 3: # RGB, (1, 3, H, W) -> (H, W, 3)
|
| 120 |
+
seg_array = np.transpose(seg_output.squeeze(0), (1, 2, 0)).astype(np.uint8)
|
| 121 |
+
elif seg_output.shape[-1] == 3: # RGB, (1, H, W, 3)
|
| 122 |
+
seg_array = seg_output.squeeze(0).astype(np.uint8)
|
| 123 |
+
else: # Fallback for unexpected shapes
|
| 124 |
+
seg_array = seg_output.squeeze().astype(np.uint8)
|
| 125 |
+
|
| 126 |
+
elif seg_output.ndim == 3: # (H, W, C) or (C, H, W)
|
| 127 |
+
seg_array = seg_output.astype(np.uint8)
|
| 128 |
+
elif seg_output.ndim == 2: # (H,W)
|
| 129 |
+
seg_array = seg_output.astype(np.uint8)
|
| 130 |
+
else:
|
| 131 |
+
raise TypeError(f"Unexpected SD segmentation output type/shape: {type(seg_output)}, {seg_output.shape}")
|
| 132 |
+
end_time = time.time()
|
| 133 |
+
print(f"SD Inference completed in {end_time - start_time:.2f} seconds.")
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
elif model_choice == "MAE-H":
|
| 137 |
+
pipe_mae = get_mae_pipeline()
|
| 138 |
+
if pipe_mae is None:
|
| 139 |
+
raise gr.Error("The MAE-H segmentation pipeline could not be loaded. "
|
| 140 |
+
"Please check the Space logs for more details, or try again later.")
|
| 141 |
+
|
| 142 |
+
print(f"Running MAE-H inference with image size: {image_rgb.size}")
|
| 143 |
+
start_time = time.time()
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
# The gen2segMAEInstancePipeline expects a list of images
|
| 146 |
+
# output_type="np" returns a NumPy array
|
| 147 |
+
pipe_output = pipe_mae([image_rgb], output_type="np")
|
| 148 |
+
# Prediction is (batch_size, height, width, 3) for MAE
|
| 149 |
+
prediction_np = pipe_output.prediction[0] # Get the first (and only) image prediction
|
| 150 |
+
|
| 151 |
+
end_time = time.time()
|
| 152 |
+
print(f"MAE-H Inference completed in {end_time - start_time:.2f} seconds.")
|
| 153 |
+
|
| 154 |
+
if not isinstance(prediction_np, np.ndarray):
|
| 155 |
+
# This case should ideally not be reached if output_type="np"
|
| 156 |
+
prediction_np = prediction_np.cpu().numpy()
|
| 157 |
+
|
| 158 |
+
# Ensure it's in the expected (H, W, C) format and uint8
|
| 159 |
+
if prediction_np.ndim == 3 and prediction_np.shape[-1] == 3: # Expected (H, W, 3)
|
| 160 |
+
seg_array = prediction_np.astype(np.uint8)
|
| 161 |
+
else:
|
| 162 |
+
# Attempt to handle other shapes if necessary, or raise error
|
| 163 |
+
raise gr.Error(f"Unexpected MAE-H prediction shape: {prediction_np.shape}. Expected (H, W, 3).")
|
| 164 |
+
|
| 165 |
+
# The MAE pipeline already does gamma correction and scaling to 0-255.
|
| 166 |
+
# It also ensures 3 channels.
|
| 167 |
+
|
| 168 |
+
else:
|
| 169 |
+
raise gr.Error(f"Invalid model choice: {model_choice}. Please select a valid model.")
|
| 170 |
+
|
| 171 |
+
if seg_array is None:
|
| 172 |
+
raise gr.Error("Segmentation array was not generated. An unknown error occurred.")
|
| 173 |
+
|
| 174 |
+
print(f"Segmentation array generated with shape: {seg_array.shape}, dtype: {seg_array.dtype}")
|
| 175 |
+
|
| 176 |
+
# Convert numpy array to PIL Image
|
| 177 |
+
# Handle grayscale or RGB based on seg_array channels
|
| 178 |
+
if seg_array.ndim == 2: # Grayscale
|
| 179 |
+
segmented_image_pil = Image.fromarray(seg_array, mode='L')
|
| 180 |
+
elif seg_array.ndim == 3 and seg_array.shape[-1] == 3: # RGB
|
| 181 |
+
segmented_image_pil = Image.fromarray(seg_array, mode='RGB')
|
| 182 |
+
elif seg_array.ndim == 3 and seg_array.shape[-1] == 1: # Grayscale with channel dim
|
| 183 |
+
segmented_image_pil = Image.fromarray(seg_array.squeeze(-1), mode='L')
|
| 184 |
+
else:
|
| 185 |
+
raise gr.Error(f"Cannot convert seg_array with shape {seg_array.shape} to PIL Image.")
|
| 186 |
+
|
| 187 |
+
# Resize back to original image resolution using LANCZOS for high quality
|
| 188 |
+
segmented_image_pil = segmented_image_pil.resize(original_resolution, Image.Resampling.LANCZOS)
|
| 189 |
+
|
| 190 |
+
print(f"Segmented image processed. Output size: {segmented_image_pil.size}, mode: {segmented_image_pil.mode}")
|
| 191 |
+
return segmented_image_pil
|
| 192 |
+
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"Error during segmentation with {model_choice}: {e}")
|
| 195 |
+
# Re-raise as gr.Error for Gradio to display, if not already one
|
| 196 |
+
if not isinstance(e, gr.Error):
|
| 197 |
+
# It's often helpful to include the type of the original exception
|
| 198 |
+
error_type = type(e).__name__
|
| 199 |
+
raise gr.Error(f"An error occurred during segmentation: {error_type} - {str(e)}")
|
| 200 |
+
else:
|
| 201 |
+
raise e # Re-raise if it's already a gr.Error
|
| 202 |
+
|
| 203 |
+
# --- Gradio Interface ---
|
| 204 |
+
title = "gen2seg: Generative Models Enable Generalizable Instance Segmentation Demo (SD & MAE-H)"
|
| 205 |
+
description = f"""
|
| 206 |
+
<div style="text-align: center; font-family: 'Arial', sans-serif;">
|
| 207 |
+
<p>Upload an image and choose a model architecture to see the instance segmentation result generated by the respective model. </p>
|
| 208 |
+
<p>
|
| 209 |
+
Currently, inference is running on CPU.
|
| 210 |
+
Performance will be significantly better on GPU.
|
| 211 |
+
</p>
|
| 212 |
+
<ul>
|
| 213 |
+
<li><strong>SD</strong>: Based on Stable Diffusion 2.
|
| 214 |
+
<a href="https://huggingface.co/{MODEL_IDS['SD']}" target="_blank">Model Link</a>.
|
| 215 |
+
<em>Approx. CPU inference time: ~1-2 minutes per image.</em>
|
| 216 |
+
</li>
|
| 217 |
+
<li><strong>MAE-H</strong>: Based on Masked Autoencoder (Huge).
|
| 218 |
+
<a href="https://huggingface.co/{MODEL_IDS['MAE-H']}" target="_blank">Model Link</a>.
|
| 219 |
+
<em>Approx. CPU inference time: ~15-45 seconds per image.</em>
|
| 220 |
+
If you experience tokenizer artifacts or very dark images, you can use gamma correction to handle this.
|
| 221 |
+
</li>
|
| 222 |
+
</ul>
|
| 223 |
+
<p>
|
| 224 |
+
For faster inference, please check out our GitHub to run the models locally on a GPU:
|
| 225 |
+
<a href="https://github.com/UCDvision/gen2seg" target="_blank">https://github.com/UCDvision/gen2seg</a>
|
| 226 |
+
</p>
|
| 227 |
+
<p>If the demo experiences issues, please open an issue on our GitHub.</p>
|
| 228 |
+
<p> If you have not already, please see our webpage at <a href="https://reachomk.github.io/gen2seg" target="_blank">https://reachomk.github.io/gen2seg</a>
|
| 229 |
+
|
| 230 |
+
</div>
|
| 231 |
+
"""
|
| 232 |
+
|
| 233 |
+
article = """
|
| 234 |
+
"""
|
| 235 |
+
|
| 236 |
+
# Define Gradio inputs
|
| 237 |
+
input_image_component = gr.Image(type="pil", label="Input Image")
|
| 238 |
+
model_choice_component = gr.Dropdown(
|
| 239 |
+
choices=list(MODEL_IDS.keys()),
|
| 240 |
+
value="SD", # Default model
|
| 241 |
+
label="Choose Segmentation Model Architecture"
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
# Define Gradio output
|
| 245 |
+
output_image_component = gr.Image(type="pil", label="Segmented Image")
|
| 246 |
+
|
| 247 |
+
# Example images (ensure these paths are correct if you upload examples to your Space)
|
| 248 |
+
# For example, if you create an "examples" folder in your Space repo:
|
| 249 |
+
# example_paths = [
|
| 250 |
+
# os.path.join("examples", "example1.jpg"),
|
| 251 |
+
# os.path.join("examples", "example2.png")
|
| 252 |
+
# ]
|
| 253 |
+
# Filter out non-existent example files to prevent errors
|
| 254 |
+
# example_paths = [ex for ex in example_paths if os.path.exists(ex)]
|
| 255 |
+
example_paths = ["cats-on-rock-1948.jpg", "dogs.png", "000000484893.jpg", "https://reachomk.github.io/gen2seg/images/comparison/vertical/7.png", "https://reachomk.github.io/gen2seg/images/comparison/horizontal/11.png", "https://reachomk.github.io/gen2seg/images/comparison/vertical/2.jpg"] # Add paths to example images here if you have them
|
| 256 |
+
|
| 257 |
+
iface = gr.Interface(
|
| 258 |
+
fn=segment_image,
|
| 259 |
+
inputs=[input_image_component, model_choice_component],
|
| 260 |
+
outputs=output_image_component,
|
| 261 |
+
title=title,
|
| 262 |
+
description=description,
|
| 263 |
+
article=article,
|
| 264 |
+
examples=example_paths if example_paths else None, # Pass None if no examples
|
| 265 |
+
allow_flagging="never",
|
| 266 |
+
theme="shivi/calm_seafoam"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
if __name__ == "__main__":
|
| 270 |
+
# Optional: Pre-load a default model on startup if desired.
|
| 271 |
+
# This can make the first inference faster but increases startup time.
|
| 272 |
+
# print("Attempting to pre-load default SD model on startup...")
|
| 273 |
+
try:
|
| 274 |
+
get_sd_pipeline() # Pre-load the default SD model
|
| 275 |
+
print("Default SD model pre-loaded successfully or was already cached.")
|
| 276 |
+
except Exception as e:
|
| 277 |
+
print(f"Could not pre-load default SD model: {e}")
|
| 278 |
+
|
| 279 |
+
print("Launching Gradio interface...")
|
| 280 |
+
iface.launch()
|