Spaces:
Sleeping
Sleeping
Rohil Bansal
commited on
Commit
·
09ae4e4
1
Parent(s):
d36d296
New training
Browse files- .gitattributes +1 -0
- checkpoints/latest_checkpoint.pth.tar +2 -2
- checkpoints/latest_checkpoint1.pth.tar +3 -0
- colorizer_pipeline.py +19 -9
- convert_checkpoint.py +31 -0
.gitattributes
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
checkpoints/latest_checkpoint.pth.tar filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1 |
checkpoints/latest_checkpoint.pth.tar filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
checkpoints/latest_checkpoint1.pth.tar filter=lfs diff=lfs merge=lfs -text
|
checkpoints/latest_checkpoint.pth.tar
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b32b1f4363aad01e662d468989e7e0b8f41afec20ffcbf1e87b6a6147454cbd
|
| 3 |
+
size 686253114
|
checkpoints/latest_checkpoint1.pth.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c8de65df3e4879e931cdf7f3de2fdc3d05298c0e955b39b2281627f36e27fcff
|
| 3 |
+
size 686252474
|
colorizer_pipeline.py
CHANGED
|
@@ -230,13 +230,22 @@ def visualize_results(epoch, generator, train_loader, device):
|
|
| 230 |
generator.train()
|
| 231 |
|
| 232 |
def save_checkpoint(state, filename="checkpoint.pth.tar"):
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
mlflow.log_artifact(filename)
|
| 235 |
|
| 236 |
-
def load_checkpoint(filename, generator, discriminator, optimizerG, optimizerD):
|
| 237 |
if os.path.isfile(filename):
|
| 238 |
print(f"Loading checkpoint '{filename}'")
|
| 239 |
-
|
|
|
|
| 240 |
start_epoch = checkpoint['epoch'] + 1
|
| 241 |
generator.load_state_dict(checkpoint['generator_state_dict'])
|
| 242 |
discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
|
|
@@ -248,6 +257,11 @@ def load_checkpoint(filename, generator, discriminator, optimizerG, optimizerD):
|
|
| 248 |
print(f"No checkpoint found at '{filename}'")
|
| 249 |
return 0
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
# Training function
|
| 252 |
def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002, beta1=0.5):
|
| 253 |
criterion = nn.BCEWithLogitsLoss()
|
|
@@ -256,12 +270,8 @@ def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002,
|
|
| 256 |
optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
|
| 257 |
optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
|
| 258 |
|
| 259 |
-
checkpoint_dir = "checkpoints"
|
| 260 |
-
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 261 |
-
os.makedirs("results", exist_ok=True)
|
| 262 |
-
|
| 263 |
checkpoint_path = os.path.join(checkpoint_dir, "latest_checkpoint.pth.tar")
|
| 264 |
-
start_epoch = load_checkpoint(checkpoint_path, generator, discriminator, optimizerG, optimizerD)
|
| 265 |
|
| 266 |
experiment_id = setup_mlflow()
|
| 267 |
with mlflow.start_run(experiment_id=experiment_id, run_name="training_run") as run:
|
|
@@ -270,7 +280,7 @@ def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002,
|
|
| 270 |
generator.train()
|
| 271 |
discriminator.train()
|
| 272 |
|
| 273 |
-
num_iterations =
|
| 274 |
pbar = tqdm(enumerate(islice(train_loader, num_iterations)), total=num_iterations, desc=f"Epoch {epoch+1}/{num_epochs}")
|
| 275 |
|
| 276 |
for i, (real_L, real_AB) in pbar:
|
|
|
|
| 230 |
generator.train()
|
| 231 |
|
| 232 |
def save_checkpoint(state, filename="checkpoint.pth.tar"):
|
| 233 |
+
# Only save the necessary state
|
| 234 |
+
save_state = {
|
| 235 |
+
'epoch': state['epoch'],
|
| 236 |
+
'generator_state_dict': state['generator_state_dict'],
|
| 237 |
+
'discriminator_state_dict': state['discriminator_state_dict'],
|
| 238 |
+
'optimizerG_state_dict': state['optimizerG_state_dict'],
|
| 239 |
+
'optimizerD_state_dict': state['optimizerD_state_dict'],
|
| 240 |
+
}
|
| 241 |
+
torch.save(save_state, filename)
|
| 242 |
mlflow.log_artifact(filename)
|
| 243 |
|
| 244 |
+
def load_checkpoint(filename, generator, discriminator, optimizerG, optimizerD, device):
|
| 245 |
if os.path.isfile(filename):
|
| 246 |
print(f"Loading checkpoint '{filename}'")
|
| 247 |
+
# Use weights_only=True for safer loading
|
| 248 |
+
checkpoint = torch.load(filename, map_location=device, weights_only=True)
|
| 249 |
start_epoch = checkpoint['epoch'] + 1
|
| 250 |
generator.load_state_dict(checkpoint['generator_state_dict'])
|
| 251 |
discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
|
|
|
|
| 257 |
print(f"No checkpoint found at '{filename}'")
|
| 258 |
return 0
|
| 259 |
|
| 260 |
+
# Global variables
|
| 261 |
+
checkpoint_dir = "checkpoints"
|
| 262 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 263 |
+
os.makedirs("results", exist_ok=True)
|
| 264 |
+
|
| 265 |
# Training function
|
| 266 |
def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002, beta1=0.5):
|
| 267 |
criterion = nn.BCEWithLogitsLoss()
|
|
|
|
| 270 |
optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
|
| 271 |
optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
checkpoint_path = os.path.join(checkpoint_dir, "latest_checkpoint.pth.tar")
|
| 274 |
+
start_epoch = load_checkpoint(checkpoint_path, generator, discriminator, optimizerG, optimizerD, device)
|
| 275 |
|
| 276 |
experiment_id = setup_mlflow()
|
| 277 |
with mlflow.start_run(experiment_id=experiment_id, run_name="training_run") as run:
|
|
|
|
| 280 |
generator.train()
|
| 281 |
discriminator.train()
|
| 282 |
|
| 283 |
+
num_iterations = 2000
|
| 284 |
pbar = tqdm(enumerate(islice(train_loader, num_iterations)), total=num_iterations, desc=f"Epoch {epoch+1}/{num_epochs}")
|
| 285 |
|
| 286 |
for i, (real_L, real_AB) in pbar:
|
convert_checkpoint.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def load_and_save_checkpoint(input_filename, output_filename, device):
|
| 5 |
+
if os.path.isfile(input_filename):
|
| 6 |
+
print(f"Loading checkpoint '{input_filename}'")
|
| 7 |
+
checkpoint = torch.load(input_filename, map_location=device)
|
| 8 |
+
|
| 9 |
+
# Extract only the necessary state
|
| 10 |
+
save_state = {
|
| 11 |
+
'epoch': checkpoint['epoch'],
|
| 12 |
+
'generator_state_dict': checkpoint['generator_state_dict'],
|
| 13 |
+
'discriminator_state_dict': checkpoint['discriminator_state_dict'],
|
| 14 |
+
'optimizerG_state_dict': checkpoint['optimizerG_state_dict'],
|
| 15 |
+
'optimizerD_state_dict': checkpoint['optimizerD_state_dict'],
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
# Save the checkpoint
|
| 19 |
+
torch.save(save_state, output_filename)
|
| 20 |
+
print(f"Saved checkpoint to '{output_filename}'")
|
| 21 |
+
else:
|
| 22 |
+
print(f"No checkpoint found at '{input_filename}'")
|
| 23 |
+
|
| 24 |
+
if __name__ == "__main__":
|
| 25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
print(f"Using device: {device}")
|
| 27 |
+
|
| 28 |
+
input_checkpoint = "checkpoints/latest_checkpoint.pth.tar"
|
| 29 |
+
output_checkpoint = "checkpoints/converted_checkpoint.pth.tar"
|
| 30 |
+
|
| 31 |
+
load_and_save_checkpoint(input_checkpoint, output_checkpoint, device)
|