company tab v0.1
Browse files- app.py +153 -39
- src/app_utils.py +33 -0
app.py
CHANGED
|
@@ -11,6 +11,7 @@ You may obtain a copy of the License at
|
|
| 11 |
App URL: https://huggingface.co/spaces/reddgr/sss
|
| 12 |
'''
|
| 13 |
|
|
|
|
| 14 |
# cd C:\Users\david\Documents\git\miax-tfm-dgr; python app.py
|
| 15 |
from pathlib import Path
|
| 16 |
from typing import Tuple
|
|
@@ -38,7 +39,6 @@ tokens = env_options.check_env(use_dotenv=USE_DOTENV, dotenv_path=DOTENV_PATH, e
|
|
| 38 |
|
| 39 |
emb_model = SentenceTransformer(EMB_MODEL_PATH, token = tokens.get("HF_TOKEN"))
|
| 40 |
|
| 41 |
-
|
| 42 |
#### CONEXIÓN DE DUCKDB CON EL DATASET PARA INDEXAR ####
|
| 43 |
print("Initializing DuckDB connection...")
|
| 44 |
con = duckdb.connect()
|
|
@@ -67,14 +67,16 @@ last_search_query: str = ""
|
|
| 67 |
last_column_filters: list[tuple[str, str]] = []
|
| 68 |
last_sort_col_label: str = ""
|
| 69 |
last_sort_dir: str = ""
|
|
|
|
| 70 |
|
| 71 |
# ---------------------------------------------------------------------------
|
| 72 |
# CONFIG --------------------------------------------------------------------
|
| 73 |
# ---------------------------------------------------------------------------
|
| 74 |
-
app_dataset = load_dataset(DATASET_PATH, split="train", token = tokens.get("HF_TOKEN")).to_pandas()
|
| 75 |
|
|
|
|
| 76 |
dh_app = fdh.FrontDatasetHandler(app_dataset=app_dataset)
|
| 77 |
maestro = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='EQUITY'].copy()
|
|
|
|
| 78 |
maestro_etf = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='ETF'].copy()
|
| 79 |
|
| 80 |
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
|
@@ -295,8 +297,20 @@ def reset_initial() -> tuple[pd.DataFrame,str,int,str,str,str]:
|
|
| 295 |
# DATOS INICIALES -----------------------------------------------------------
|
| 296 |
# ---------------------------------------------------------------------------
|
| 297 |
|
|
|
|
|
|
|
|
|
|
| 298 |
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
|
| 299 |
_initial_slice, _initial_label = _paginate(last_result_df, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
# ---------------------------------------------------------------------------
|
| 302 |
# UI ------------------------------------------------------------------------
|
|
@@ -313,7 +327,7 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 313 |
# ---------------------- TOP INPUT -------------------------------------
|
| 314 |
with gr.Row(equal_height=True):
|
| 315 |
theme_input = gr.Textbox(show_label=False, placeholder="Search a theme. i.e. 'lithium'", scale=2)
|
| 316 |
-
ticker_input = gr.Textbox(show_label=False, placeholder="Enter a ticker symbol", scale=1)
|
| 317 |
buscar_button = gr.Button("Search")
|
| 318 |
gr.HTML("<div></div>")
|
| 319 |
reset_button = gr.Button("Reset", elem_classes="small-btn")
|
|
@@ -323,38 +337,132 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 323 |
# ---------------------- SEARCH SUMMARY ------------------------
|
| 324 |
summary_display = gr.Markdown("", elem_classes="search-spec")
|
| 325 |
|
| 326 |
-
# ----------------------
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
)
|
| 334 |
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
)
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
)
|
| 356 |
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
# ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
|
| 360 |
# De momento excluimos esta funcionalidad, al menos en la tabla de acciones,
|
|
@@ -394,7 +502,7 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 394 |
)
|
| 395 |
|
| 396 |
ticker_input.submit(
|
| 397 |
-
reset_page,
|
| 398 |
).then(
|
| 399 |
search_all,
|
| 400 |
inputs=inputs,
|
|
@@ -402,7 +510,7 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 402 |
)
|
| 403 |
|
| 404 |
theme_input.submit(
|
| 405 |
-
reset_page,
|
| 406 |
).then(
|
| 407 |
search_all,
|
| 408 |
inputs=inputs,
|
|
@@ -411,7 +519,7 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 411 |
|
| 412 |
random_button.click(
|
| 413 |
random_action,
|
| 414 |
-
|
| 415 |
[ticker_input, page_state, theme_input]
|
| 416 |
).then(
|
| 417 |
search_all,
|
|
@@ -421,7 +529,7 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 421 |
|
| 422 |
reset_button.click(
|
| 423 |
reset_initial,
|
| 424 |
-
|
| 425 |
[output_df, pagination_label, page_state, ticker_input, theme_input, sort_col, summary_display]
|
| 426 |
)
|
| 427 |
|
|
@@ -453,6 +561,18 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 453 |
outputs=[output_df, pagination_label, page_state, summary_display]
|
| 454 |
)
|
| 455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
# ---------------------- FILTERS BY COLUMN ------------------ #
|
| 457 |
filterable_columns = [rename_columns.get(c, c) for c in cat_cols]
|
| 458 |
|
|
@@ -472,12 +592,6 @@ with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
|
|
| 472 |
summary = _compose_summary()
|
| 473 |
return slice_df, label, 1, summary
|
| 474 |
|
| 475 |
-
|
| 476 |
-
output_df.select(
|
| 477 |
-
filter_by_column,
|
| 478 |
-
outputs=[output_df, pagination_label, page_state, summary_display]
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
# ---------------------------------------------------------------------------
|
| 482 |
# LAUNCH --------------------------------------------------------------------
|
| 483 |
# ---------------------------------------------------------------------------
|
|
|
|
| 11 |
App URL: https://huggingface.co/spaces/reddgr/sss
|
| 12 |
'''
|
| 13 |
|
| 14 |
+
### DEBUGGING COMMAND (DGR):
|
| 15 |
# cd C:\Users\david\Documents\git\miax-tfm-dgr; python app.py
|
| 16 |
from pathlib import Path
|
| 17 |
from typing import Tuple
|
|
|
|
| 39 |
|
| 40 |
emb_model = SentenceTransformer(EMB_MODEL_PATH, token = tokens.get("HF_TOKEN"))
|
| 41 |
|
|
|
|
| 42 |
#### CONEXIÓN DE DUCKDB CON EL DATASET PARA INDEXAR ####
|
| 43 |
print("Initializing DuckDB connection...")
|
| 44 |
con = duckdb.connect()
|
|
|
|
| 67 |
last_column_filters: list[tuple[str, str]] = []
|
| 68 |
last_sort_col_label: str = ""
|
| 69 |
last_sort_dir: str = ""
|
| 70 |
+
selected_ticker: str = ""
|
| 71 |
|
| 72 |
# ---------------------------------------------------------------------------
|
| 73 |
# CONFIG --------------------------------------------------------------------
|
| 74 |
# ---------------------------------------------------------------------------
|
|
|
|
| 75 |
|
| 76 |
+
app_dataset = load_dataset(DATASET_PATH, split="train", token = tokens.get("HF_TOKEN")).to_pandas()
|
| 77 |
dh_app = fdh.FrontDatasetHandler(app_dataset=app_dataset)
|
| 78 |
maestro = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='EQUITY'].copy()
|
| 79 |
+
print("maestro_columns", maestro.columns.to_list())
|
| 80 |
maestro_etf = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='ETF'].copy()
|
| 81 |
|
| 82 |
with open(JSON_PATH / "app_column_config.json", "r") as f:
|
|
|
|
| 297 |
# DATOS INICIALES -----------------------------------------------------------
|
| 298 |
# ---------------------------------------------------------------------------
|
| 299 |
|
| 300 |
+
#last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
|
| 301 |
+
#_initial_slice, _initial_label = _paginate(last_result_df, 1)
|
| 302 |
+
|
| 303 |
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
|
| 304 |
_initial_slice, _initial_label = _paginate(last_result_df, 1)
|
| 305 |
+
# Ticker por defecto es el primero de la lista
|
| 306 |
+
if not last_result_df.empty:
|
| 307 |
+
selected_ticker = last_result_df.iloc[0][rename_columns.get('ticker','ticker')]
|
| 308 |
+
# Fetch initial company info
|
| 309 |
+
if selected_ticker:
|
| 310 |
+
init_name, init_summary, init_details = utils.get_company_info(maestro, selected_ticker, rename_columns)
|
| 311 |
+
else:
|
| 312 |
+
init_name, init_summary, init_details = "", "", pd.DataFrame()
|
| 313 |
+
|
| 314 |
|
| 315 |
# ---------------------------------------------------------------------------
|
| 316 |
# UI ------------------------------------------------------------------------
|
|
|
|
| 327 |
# ---------------------- TOP INPUT -------------------------------------
|
| 328 |
with gr.Row(equal_height=True):
|
| 329 |
theme_input = gr.Textbox(show_label=False, placeholder="Search a theme. i.e. 'lithium'", scale=2)
|
| 330 |
+
ticker_input = gr.Textbox(show_label=False, placeholder="Enter a ticker symbol. i.e. 'nvda'", scale=1)
|
| 331 |
buscar_button = gr.Button("Search")
|
| 332 |
gr.HTML("<div></div>")
|
| 333 |
reset_button = gr.Button("Reset", elem_classes="small-btn")
|
|
|
|
| 337 |
# ---------------------- SEARCH SUMMARY ------------------------
|
| 338 |
summary_display = gr.Markdown("", elem_classes="search-spec")
|
| 339 |
|
| 340 |
+
# ---------------------- RESULTS ↔ COMPANY TABS ----------------------------
|
| 341 |
+
with gr.Tabs(selected=0) as main_tabs: # 0 = “Results”
|
| 342 |
+
# ---- TAB 1: GRID --------------------------------------------------
|
| 343 |
+
with gr.TabItem("Grid"):
|
| 344 |
+
output_df = gr.Dataframe(
|
| 345 |
+
value=_initial_slice,
|
| 346 |
+
interactive=False,
|
| 347 |
+
elem_classes="df-cells",
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
with gr.Row():
|
| 351 |
+
btn_prev = gr.Button("Previous", elem_classes="small-btn")
|
| 352 |
+
pagination_label = gr.Markdown(_initial_label)
|
| 353 |
+
btn_next = gr.Button("Next", elem_classes="small-btn")
|
| 354 |
+
gr.Markdown(" " * 20)
|
| 355 |
+
sort_col = gr.Dropdown(
|
| 356 |
+
[rename_columns.get(c, c) for c in caracteristicas],
|
| 357 |
+
value=None,
|
| 358 |
+
label="Reset and sort by:",
|
| 359 |
+
allow_custom_value=False,
|
| 360 |
+
scale=2,
|
| 361 |
+
)
|
| 362 |
+
sort_dir = gr.Radio(
|
| 363 |
+
["Ascending", "Descending"],
|
| 364 |
+
value="Descending",
|
| 365 |
+
label="",
|
| 366 |
+
scale=1,
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# ---- TAB 2: COMPANY --------------------------------------------------
|
| 370 |
+
with gr.TabItem("Company details")as company_tab: ####
|
| 371 |
+
company_title = gr.Markdown(f"## {init_name}" if init_name else "### Company Name")
|
| 372 |
+
company_summary = gr.Markdown(init_summary)
|
| 373 |
+
company_details = gr.Dataframe(value=init_details, interactive=False)
|
| 374 |
+
|
| 375 |
+
def on_company_tab(evt: gr.SelectData):
|
| 376 |
+
global selected_ticker
|
| 377 |
+
if evt.selected and selected_ticker:
|
| 378 |
+
maestro_details = maestro.copy()
|
| 379 |
+
maestro_details.drop(columns=["embeddings"], inplace=True, errors="ignore")
|
| 380 |
+
name, summary, details_df = utils.get_company_info(maestro_details, selected_ticker, rename_columns)
|
| 381 |
+
return (
|
| 382 |
+
gr.update(value=f"## {name}"),
|
| 383 |
+
gr.update(value=summary),
|
| 384 |
+
gr.update(value=details_df)
|
| 385 |
+
)
|
| 386 |
+
return gr.update(), gr.update(), gr.update()
|
| 387 |
+
|
| 388 |
+
company_tab.select(
|
| 389 |
+
on_company_tab,
|
| 390 |
+
inputs=[],
|
| 391 |
+
outputs=[company_title, company_summary, company_details]
|
| 392 |
)
|
| 393 |
|
| 394 |
+
|
| 395 |
+
page_state = gr.State(1)
|
| 396 |
|
| 397 |
+
|
| 398 |
+
# ---------------------- COMPANY DETAIL ---------------------
|
| 399 |
+
def on_table_select(evt: gr.SelectData):
|
| 400 |
+
print(f"DEBUG on_table_select called: index={evt.index}, value={evt.value}")
|
| 401 |
+
global last_result_df, selected_ticker
|
| 402 |
+
row_i, col_i = evt.index
|
| 403 |
+
if col_i == 0:
|
| 404 |
+
ticker = evt.value
|
| 405 |
+
print(f"DEBUG ticker extracted: {ticker}")
|
| 406 |
+
selected_ticker = ticker
|
| 407 |
+
elif col_i == 1 or (4 <= col_i <= 10):
|
| 408 |
+
display_col = rename_columns.get("ticker", "ticker")
|
| 409 |
+
ticker = last_result_df.iloc[row_i][display_col]
|
| 410 |
+
print(f"DEBUG ticker extracted: {ticker}")
|
| 411 |
+
else:
|
| 412 |
+
return filter_by_column(evt) + (
|
| 413 |
+
gr.update(selected=0), "", "", pd.DataFrame()
|
| 414 |
+
)
|
| 415 |
+
name, summary, details_df = utils.get_company_info(
|
| 416 |
+
maestro, ticker, rename_columns
|
| 417 |
)
|
| 418 |
+
print(f"DEBUG ➡ selected ticker={ticker}, name={name}")
|
| 419 |
+
return (
|
| 420 |
+
last_result_df,
|
| 421 |
+
pagination_label,
|
| 422 |
+
page_state,
|
| 423 |
+
summary_display,
|
| 424 |
+
gr.update(selected=1), # ← change here
|
| 425 |
+
gr.update(value=f"## {name}"),
|
| 426 |
+
gr.update(value=summary),
|
| 427 |
+
gr.update(value=details_df)
|
| 428 |
)
|
| 429 |
|
| 430 |
+
|
| 431 |
+
output_df.select(
|
| 432 |
+
on_table_select,
|
| 433 |
+
inputs=[],
|
| 434 |
+
outputs=[
|
| 435 |
+
output_df, pagination_label, page_state, summary_display,
|
| 436 |
+
main_tabs, company_title, company_summary, company_details
|
| 437 |
+
]
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# — Update company‑details whenever the table’s first row changes —
|
| 441 |
+
def on_df_first_row_change(df: pd.DataFrame):
|
| 442 |
+
global selected_ticker
|
| 443 |
+
# if table is empty, do nothing
|
| 444 |
+
if df is None or df.empty:
|
| 445 |
+
return gr.update(), gr.update(), gr.update()
|
| 446 |
+
# extract ticker from first row
|
| 447 |
+
ticker_col = rename_columns.get('ticker','ticker')
|
| 448 |
+
new_ticker = df.iloc[0][ticker_col]
|
| 449 |
+
# if it really changed, fetch new info
|
| 450 |
+
if new_ticker != selected_ticker:
|
| 451 |
+
selected_ticker = new_ticker
|
| 452 |
+
name, summary, details_df = utils.get_company_info(maestro, selected_ticker, rename_columns)
|
| 453 |
+
return (
|
| 454 |
+
gr.update(value=f"## {name}"),
|
| 455 |
+
gr.update(value=summary),
|
| 456 |
+
gr.update(value=details_df)
|
| 457 |
+
)
|
| 458 |
+
# otherwise leave components as‑is
|
| 459 |
+
return gr.update(), gr.update(), gr.update()
|
| 460 |
+
|
| 461 |
+
output_df.change(
|
| 462 |
+
on_df_first_row_change,
|
| 463 |
+
inputs=[output_df],
|
| 464 |
+
outputs=[company_title, company_summary, company_details]
|
| 465 |
+
)
|
| 466 |
|
| 467 |
# ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
|
| 468 |
# De momento excluimos esta funcionalidad, al menos en la tabla de acciones,
|
|
|
|
| 502 |
)
|
| 503 |
|
| 504 |
ticker_input.submit(
|
| 505 |
+
reset_page, [], page_state
|
| 506 |
).then(
|
| 507 |
search_all,
|
| 508 |
inputs=inputs,
|
|
|
|
| 510 |
)
|
| 511 |
|
| 512 |
theme_input.submit(
|
| 513 |
+
reset_page, [], page_state
|
| 514 |
).then(
|
| 515 |
search_all,
|
| 516 |
inputs=inputs,
|
|
|
|
| 519 |
|
| 520 |
random_button.click(
|
| 521 |
random_action,
|
| 522 |
+
[],
|
| 523 |
[ticker_input, page_state, theme_input]
|
| 524 |
).then(
|
| 525 |
search_all,
|
|
|
|
| 529 |
|
| 530 |
reset_button.click(
|
| 531 |
reset_initial,
|
| 532 |
+
[],
|
| 533 |
[output_df, pagination_label, page_state, ticker_input, theme_input, sort_col, summary_display]
|
| 534 |
)
|
| 535 |
|
|
|
|
| 561 |
outputs=[output_df, pagination_label, page_state, summary_display]
|
| 562 |
)
|
| 563 |
|
| 564 |
+
|
| 565 |
+
def on_tab_change(tab_index):
|
| 566 |
+
if tab_index == 1 and selected_ticker:
|
| 567 |
+
name, summary, details_df = utils.get_company_info(maestro, selected_ticker, rename_columns)
|
| 568 |
+
return (
|
| 569 |
+
gr.update(value=f"## {name}"),
|
| 570 |
+
gr.update(value=summary),
|
| 571 |
+
gr.update(value=details_df)
|
| 572 |
+
)
|
| 573 |
+
return gr.update(), gr.update(), gr.update()
|
| 574 |
+
|
| 575 |
+
|
| 576 |
# ---------------------- FILTERS BY COLUMN ------------------ #
|
| 577 |
filterable_columns = [rename_columns.get(c, c) for c in cat_cols]
|
| 578 |
|
|
|
|
| 592 |
summary = _compose_summary()
|
| 593 |
return slice_df, label, 1, summary
|
| 594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 595 |
# ---------------------------------------------------------------------------
|
| 596 |
# LAUNCH --------------------------------------------------------------------
|
| 597 |
# ---------------------------------------------------------------------------
|
src/app_utils.py
CHANGED
|
@@ -93,4 +93,37 @@ def get_company_info(
|
|
| 93 |
})
|
| 94 |
df["Field"] = df["Field"].map(lambda c: rename_columns.get(c, c))
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
return name, summary, df
|
|
|
|
| 93 |
})
|
| 94 |
df["Field"] = df["Field"].map(lambda c: rename_columns.get(c, c))
|
| 95 |
|
| 96 |
+
# Round _norm fields to 3 decimal places
|
| 97 |
+
for i, field in enumerate(df["Field"]):
|
| 98 |
+
if field.endswith("_norm"):
|
| 99 |
+
value = df.iloc[i]["Value"]
|
| 100 |
+
if isinstance(value, (int, float)) and not pd.isna(value):
|
| 101 |
+
df.iloc[i, df.columns.get_loc("Value")] = round(value, 3)
|
| 102 |
+
# Process numeric fields using format_results function
|
| 103 |
+
# Extract numeric fields (excluding already processed _norm fields)
|
| 104 |
+
numeric_fields = []
|
| 105 |
+
numeric_values = []
|
| 106 |
+
numeric_indices = []
|
| 107 |
+
|
| 108 |
+
for i, (display_field, value) in enumerate(zip(df["Field"], df["Value"])):
|
| 109 |
+
if not display_field.endswith("_norm") and isinstance(value, (int, float)) and not pd.isna(value):
|
| 110 |
+
# Get original field name using inverse rename dictionary
|
| 111 |
+
orig_field = next((k for k, v in rename_columns.items() if v == display_field), display_field)
|
| 112 |
+
numeric_fields.append(orig_field)
|
| 113 |
+
numeric_values.append(value)
|
| 114 |
+
numeric_indices.append(i)
|
| 115 |
+
|
| 116 |
+
if numeric_fields:
|
| 117 |
+
# Create a single-row dataframe with original field names
|
| 118 |
+
temp_df = pd.DataFrame([numeric_values], columns=numeric_fields)
|
| 119 |
+
|
| 120 |
+
# Apply format_results function
|
| 121 |
+
formatted_df = format_results(temp_df, rename_columns)
|
| 122 |
+
|
| 123 |
+
# Put formatted values back into the original dataframe
|
| 124 |
+
for i, field in zip(numeric_indices, numeric_fields):
|
| 125 |
+
display_field = rename_columns.get(field, field)
|
| 126 |
+
df.iloc[i, df.columns.get_loc("Value")] = formatted_df.iloc[0][display_field]
|
| 127 |
+
|
| 128 |
+
|
| 129 |
return name, summary, df
|