Spaces:
Runtime error
Runtime error
| from dotenv import load_dotenv | |
| import gradio as gr | |
| import os | |
| from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
| from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from sentence_transformers import SentenceTransformer | |
| import firebase_admin | |
| from firebase_admin import db, credentials | |
| import datetime | |
| import uuid | |
| # Load environment variables | |
| load_dotenv() | |
| # authenticate to firebase | |
| cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json") | |
| firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"}) | |
| # Configure the Llama index settings | |
| Settings.llm = HuggingFaceInferenceAPI( | |
| model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
| tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
| context_window=3000, | |
| token=os.getenv("HF_TOKEN"), | |
| max_new_tokens=512, | |
| generate_kwargs={"temperature": 0.1}, | |
| ) | |
| Settings.embed_model = HuggingFaceEmbedding( | |
| model_name="BAAI/bge-small-en-v1.5" | |
| ) | |
| # Define the directory for persistent storage and data | |
| PERSIST_DIR = "db" | |
| PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs | |
| # Ensure directories exist | |
| os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
| os.makedirs(PERSIST_DIR, exist_ok=True) | |
| # Variable to store current chat conversation | |
| current_chat_history = [] | |
| def data_ingestion_from_directory(): | |
| # Use SimpleDirectoryReader on the directory containing the PDF files | |
| documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
| storage_context = StorageContext.from_defaults() | |
| index = VectorStoreIndex.from_documents(documents) | |
| index.storage_context.persist(persist_dir=PERSIST_DIR) | |
| def handle_query(query): | |
| chat_text_qa_msgs = [ | |
| ( | |
| "user", | |
| """ | |
| As FernAI, your goal is to offer top-tier service and information about RedFerns Tech company. | |
| Provide concise answers based on the conversation flow. Ultimately, aim to attract users to connect with our services. | |
| Summarize responses effectively in 20-60 words without unnecessary repetition. | |
| {context_str} | |
| Question: | |
| {query_str} | |
| """ | |
| ) | |
| ] | |
| text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
| # Load index from storage | |
| storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
| index = load_index_from_storage(storage_context) | |
| # Use chat history to enhance response | |
| context_str = "" | |
| for past_query, response in reversed(current_chat_history): | |
| if past_query.strip(): | |
| context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
| query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
| answer = query_engine.query(query) | |
| if hasattr(answer, 'response'): | |
| response = answer.response | |
| elif isinstance(answer, dict) and 'response' in answer: | |
| response = answer['response'] | |
| else: | |
| response = "Sorry, I couldn't find an answer." | |
| # Update current chat history | |
| current_chat_history.append((query, response)) | |
| return response | |
| # Example usage: Process PDF ingestion from directory | |
| print("Processing PDF ingestion from directory:", PDF_DIRECTORY) | |
| data_ingestion_from_directory() | |
| # Define the function to handle predictions | |
| """def predict(message,history): | |
| response = handle_query(message) | |
| return response""" | |
| def predict(message, history): | |
| logo_html = ''' | |
| <div class="circle-logo"> | |
| <img src="https://rb.gy/8r06eg" alt="FernAi"> | |
| </div> | |
| ''' | |
| response = handle_query(message) | |
| response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>' | |
| return response_with_logo | |
| def save_chat_message(session_id, message_data): | |
| ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data | |
| ref.push().set(message_data) | |
| # Define your Gradio chat interface function (replace with your actual logic) | |
| def chat_interface(message, history): | |
| try: | |
| # Generate a unique session ID for this chat session | |
| session_id = str(uuid.uuid4()) | |
| # Process the user message and generate a response (your chatbot logic) | |
| response = handle_query(message) | |
| # Capture the message data | |
| message_data = { | |
| "sender": "user", | |
| "message": message, | |
| "response": response, | |
| "timestamp": datetime.datetime.now().isoformat() # Use a library like datetime | |
| } | |
| # Call the save function to store in Firebase with the generated session ID | |
| save_chat_message(session_id, message_data) | |
| # Return the bot response | |
| return response | |
| except Exception as e: | |
| return str(e) | |
| # Custom CSS for styling | |
| css = ''' | |
| .circle-logo { | |
| display: inline-block; | |
| width: 40px; | |
| height: 40px; | |
| border-radius: 50%; | |
| overflow: hidden; | |
| margin-right: 10px; | |
| vertical-align: middle; | |
| } | |
| .circle-logo img { | |
| width: 100%; | |
| height: 100%; | |
| object-fit: cover; | |
| } | |
| .response-with-logo { | |
| display: flex; | |
| align-items: center; | |
| margin-bottom: 10px; | |
| } | |
| footer { | |
| display: none !important; | |
| background-color: #F8D7DA; | |
| } | |
| label.svelte-1b6s6s {display: none} | |
| ''' | |
| gr.ChatInterface(chat_interface, | |
| css=css, | |
| description="FernAI", | |
| clear_btn=None, undo_btn=None, retry_btn=None, | |
| examples=['Tell me about Redfernstech?', 'Services in Redfernstech?'] | |
| ).launch() |