Spaces:
Runtime error
Runtime error
Srinivasulu kethanaboina
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,11 @@
|
|
| 1 |
from dotenv import load_dotenv
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
|
|
|
| 4 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
| 5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
| 6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 7 |
-
from
|
| 8 |
-
import csv
|
| 9 |
-
import os
|
| 10 |
-
import csv
|
| 11 |
-
import os
|
| 12 |
-
from datasets import Dataset, DatasetDict
|
| 13 |
-
|
| 14 |
-
PERSIST_DIR = "history" # Replace with your actual directory path
|
| 15 |
-
CSV_FILE = os.path.join(PERSIST_DIR, "chat_history.csv")
|
| 16 |
-
|
| 17 |
-
# Assuming current_chat_history is managed within a Dataset or DatasetDict
|
| 18 |
-
current_chat_history = Dataset({"query": [], "response": []})
|
| 19 |
-
|
| 20 |
-
|
| 21 |
|
| 22 |
# Load environment variables
|
| 23 |
load_dotenv()
|
|
@@ -36,29 +24,28 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
| 36 |
)
|
| 37 |
|
| 38 |
# Define the directory for persistent storage and data
|
| 39 |
-
PERSIST_DIR = "
|
| 40 |
-
|
| 41 |
|
| 42 |
# Ensure directories exist
|
| 43 |
-
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
| 44 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 45 |
|
| 46 |
# Variable to store current chat conversation
|
| 47 |
-
current_chat_history = []
|
|
|
|
| 48 |
|
| 49 |
def data_ingestion_from_directory():
|
| 50 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
|
|
|
| 51 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
| 52 |
storage_context = StorageContext.from_defaults()
|
| 53 |
index = VectorStoreIndex.from_documents(documents)
|
| 54 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 55 |
|
|
|
|
| 56 |
def handle_query(query):
|
| 57 |
global current_chat_history
|
| 58 |
|
| 59 |
-
# Ensure the directory exists or create it
|
| 60 |
-
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 61 |
-
|
| 62 |
chat_text_qa_msgs = [
|
| 63 |
(
|
| 64 |
"user",
|
|
@@ -95,8 +82,7 @@ def handle_query(query):
|
|
| 95 |
response = "Sorry, I couldn't find an answer."
|
| 96 |
|
| 97 |
# Update current chat history
|
| 98 |
-
current_chat_history
|
| 99 |
-
current_chat_history["response"].append(response)
|
| 100 |
|
| 101 |
# Save chat history to CSV
|
| 102 |
with open(CSV_FILE, 'a', newline='', encoding='utf-8') as file:
|
|
@@ -105,14 +91,7 @@ def handle_query(query):
|
|
| 105 |
|
| 106 |
return response
|
| 107 |
|
| 108 |
-
# Example usage: Process PDF ingestion from directory
|
| 109 |
-
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
| 110 |
-
data_ingestion_from_directory()
|
| 111 |
|
| 112 |
-
# Define the function to handle predictions
|
| 113 |
-
"""def predict(message,history):
|
| 114 |
-
response = handle_query(message)
|
| 115 |
-
return response"""
|
| 116 |
def predict(message, history):
|
| 117 |
# Your logo HTML code
|
| 118 |
logo_html = '''
|
|
@@ -167,9 +146,11 @@ footer {
|
|
| 167 |
}
|
| 168 |
label.svelte-1b6s6s {display: none}
|
| 169 |
'''
|
|
|
|
|
|
|
| 170 |
gr.ChatInterface(predict,
|
| 171 |
css=css,
|
| 172 |
description="FernAI",
|
| 173 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
| 174 |
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
|
| 175 |
-
).launch(share
|
|
|
|
| 1 |
from dotenv import load_dotenv
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
+
import csv
|
| 5 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
| 6 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
| 7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 8 |
+
from datasets import Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Load environment variables
|
| 11 |
load_dotenv()
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
# Define the directory for persistent storage and data
|
| 27 |
+
PERSIST_DIR = "history" # Replace with your actual directory path
|
| 28 |
+
CSV_FILE = os.path.join(PERSIST_DIR, "chat_history.csv")
|
| 29 |
|
| 30 |
# Ensure directories exist
|
|
|
|
| 31 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 32 |
|
| 33 |
# Variable to store current chat conversation
|
| 34 |
+
current_chat_history = Dataset.from_dict({"query": [], "response": []})
|
| 35 |
+
|
| 36 |
|
| 37 |
def data_ingestion_from_directory():
|
| 38 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
| 39 |
+
PDF_DIRECTORY = 'data' # Replace with the directory containing your PDFs
|
| 40 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
| 41 |
storage_context = StorageContext.from_defaults()
|
| 42 |
index = VectorStoreIndex.from_documents(documents)
|
| 43 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 44 |
|
| 45 |
+
|
| 46 |
def handle_query(query):
|
| 47 |
global current_chat_history
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
chat_text_qa_msgs = [
|
| 50 |
(
|
| 51 |
"user",
|
|
|
|
| 82 |
response = "Sorry, I couldn't find an answer."
|
| 83 |
|
| 84 |
# Update current chat history
|
| 85 |
+
current_chat_history = current_chat_history.concat(Dataset.from_dict({"query": [query], "response": [response]}))
|
|
|
|
| 86 |
|
| 87 |
# Save chat history to CSV
|
| 88 |
with open(CSV_FILE, 'a', newline='', encoding='utf-8') as file:
|
|
|
|
| 91 |
|
| 92 |
return response
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
def predict(message, history):
|
| 96 |
# Your logo HTML code
|
| 97 |
logo_html = '''
|
|
|
|
| 146 |
}
|
| 147 |
label.svelte-1b6s6s {display: none}
|
| 148 |
'''
|
| 149 |
+
|
| 150 |
+
# Launch Gradio interface
|
| 151 |
gr.ChatInterface(predict,
|
| 152 |
css=css,
|
| 153 |
description="FernAI",
|
| 154 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
| 155 |
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
|
| 156 |
+
).launch(share=False)
|