Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,15 +40,16 @@ def data_ingestion_from_directory():
|
|
| 40 |
index = VectorStoreIndex.from_documents(documents)
|
| 41 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 42 |
|
| 43 |
-
def handle_query(
|
| 44 |
-
# Prepare the chat history for context
|
| 45 |
-
chat_history = [[msg["text"], ""] for msg in history]
|
| 46 |
-
|
| 47 |
-
# Prepare the chat prompt template
|
| 48 |
chat_text_qa_msgs = [
|
| 49 |
(
|
| 50 |
"user",
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
]
|
| 54 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
|
@@ -57,9 +58,14 @@ def handle_query(message, history):
|
|
| 57 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 58 |
index = load_index_from_storage(storage_context)
|
| 59 |
|
| 60 |
-
# Use
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
if hasattr(answer, 'response'):
|
| 65 |
response = answer.response
|
|
@@ -68,23 +74,19 @@ def handle_query(message, history):
|
|
| 68 |
else:
|
| 69 |
response = "Sorry, I couldn't find an answer."
|
| 70 |
|
| 71 |
-
# Update chat history
|
| 72 |
-
|
| 73 |
|
| 74 |
return response
|
| 75 |
|
| 76 |
-
|
| 77 |
# Example usage: Process PDF ingestion from directory
|
| 78 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
| 79 |
data_ingestion_from_directory()
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
title="RedfernsTech Q&A Chatbot",
|
| 86 |
-
description="Ask me anything about the uploaded document."
|
| 87 |
-
)
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
|
|
|
| 40 |
index = VectorStoreIndex.from_documents(documents)
|
| 41 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 42 |
|
| 43 |
+
def handle_query(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
chat_text_qa_msgs = [
|
| 45 |
(
|
| 46 |
"user",
|
| 47 |
+
"""
|
| 48 |
+
You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.
|
| 49 |
+
{context_str}
|
| 50 |
+
Question:
|
| 51 |
+
{query_str}
|
| 52 |
+
"""
|
| 53 |
)
|
| 54 |
]
|
| 55 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
|
|
|
| 58 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 59 |
index = load_index_from_storage(storage_context)
|
| 60 |
|
| 61 |
+
# Use chat history to enhance response
|
| 62 |
+
context_str = ""
|
| 63 |
+
for past_query, response in reversed(current_chat_history):
|
| 64 |
+
if past_query.strip():
|
| 65 |
+
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
| 66 |
+
|
| 67 |
+
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
| 68 |
+
answer = query_engine.query(query)
|
| 69 |
|
| 70 |
if hasattr(answer, 'response'):
|
| 71 |
response = answer.response
|
|
|
|
| 74 |
else:
|
| 75 |
response = "Sorry, I couldn't find an answer."
|
| 76 |
|
| 77 |
+
# Update current chat history
|
| 78 |
+
current_chat_history.append((query, response))
|
| 79 |
|
| 80 |
return response
|
| 81 |
|
|
|
|
| 82 |
# Example usage: Process PDF ingestion from directory
|
| 83 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
| 84 |
data_ingestion_from_directory()
|
| 85 |
|
| 86 |
+
# Define the function to handle predictions
|
| 87 |
+
def predict(message):
|
| 88 |
+
response = handle_query(message)
|
| 89 |
+
return response
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
# Create the Gradio interface using ChatInterface
|
| 92 |
+
gr.ChatInterface(predict).launch()
|