Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| MODEL_NAME = "reshinthadith" | |
| def load_model_and_tokenizer(model_name): | |
| """Adding load_model_and_tokenizer function to keep the model in the memory""" | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| return tokenizer,model | |
| tokenizer,model = load_model_and_tokenizer(MODEL_NAME) | |
| st.set_page_config( | |
| page_title= "Code Representation Learning", | |
| initial_sidebar_state= "expanded" | |
| ) | |
| st.sidebar.title("Code Representation Learning") | |
| workflow = st.sidebar.selectbox('select a task', ['Bash Synthesis']) | |
| if workflow == "Bash Synthesis": | |
| st.title("Program Synthesis for Bash") | |
| arxiv_id = st.text_input("Natural Language prompt ","list all the files in the directory 'data\' ") | |
| output_diction = {} | |
| button = st.button("synthesize") | |
| if button: | |
| link_gen = r"https://arxiv.org/abs/" | |
| webbrowser.open_new_tab(link_gen+str(arxiv_id)) | |
| # Abstract | |
| with st.beta_expander("Abstract"): | |
| st.write(output_diction["abstract"]) | |
| with st.beta_expander("Influencing Citations"): | |
| st.write(output_diction["influenital_citations"]) | |
| with st.beta_expander("Citation Graph"): | |
| print("") | |
| elif workflow == "Rebuttal Analysis": | |
| st.title("Rebuttal Analysis") |