Spaces:
Runtime error
Runtime error
Update control/recommendation_handler.py
Browse files- control/recommendation_handler.py +133 -131
control/recommendation_handler.py
CHANGED
|
@@ -29,7 +29,6 @@ import requests
|
|
| 29 |
import json
|
| 30 |
import math
|
| 31 |
import re
|
| 32 |
-
import warnings
|
| 33 |
import pandas as pd
|
| 34 |
import numpy as np
|
| 35 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
@@ -37,10 +36,7 @@ import os
|
|
| 37 |
#os.environ['TRANSFORMERS_CACHE'] ="./models/allmini/cache"
|
| 38 |
import os.path
|
| 39 |
from sentence_transformers import SentenceTransformer
|
| 40 |
-
|
| 41 |
-
import tensorflow as tf
|
| 42 |
-
from umap.parametric_umap import ParametricUMAP, load_ParametricUMAP
|
| 43 |
-
from sentence_transformers import SentenceTransformer
|
| 44 |
|
| 45 |
def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json',
|
| 46 |
existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'):
|
|
@@ -64,45 +60,31 @@ def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all
|
|
| 64 |
json_file = json_file_path
|
| 65 |
if(os.path.isfile(existing_json_populated_file_path)):
|
| 66 |
json_file = existing_json_populated_file_path
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
Raises:
|
| 90 |
-
Warning: Warns about sentences that have more
|
| 91 |
-
than 256 words.
|
| 92 |
-
"""
|
| 93 |
-
for t in texts:
|
| 94 |
-
n_words = len(re.split(r"\s+", t))
|
| 95 |
-
if(n_words > 256):
|
| 96 |
-
# warning in case of prompts longer than 256 words
|
| 97 |
-
warnings.warn("Warning: Sentence provided is longer than 256 words. Model all-MiniLM-L6-v2 expects sentences up to 256 words.")
|
| 98 |
-
warnings.warn("Word count:{}".format(n_words))
|
| 99 |
-
if('sentence-transformers/all-MiniLM-L6-v2' in api_url):
|
| 100 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 101 |
-
out = model.encode(texts).tolist()
|
| 102 |
else:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
return
|
| 106 |
|
| 107 |
def split_into_sentences(prompt):
|
| 108 |
"""
|
|
@@ -123,27 +105,6 @@ def split_into_sentences(prompt):
|
|
| 123 |
sentences = re.split(r'(?<=[.!?]) +', prompt)
|
| 124 |
return sentences
|
| 125 |
|
| 126 |
-
|
| 127 |
-
def get_similarity(embedding1, embedding2):
|
| 128 |
-
"""
|
| 129 |
-
Function that returns cosine similarity between
|
| 130 |
-
two embeddings.
|
| 131 |
-
|
| 132 |
-
Args:
|
| 133 |
-
embedding1: first embedding.
|
| 134 |
-
embedding2: second embedding.
|
| 135 |
-
|
| 136 |
-
Returns:
|
| 137 |
-
The similarity value.
|
| 138 |
-
|
| 139 |
-
Raises:
|
| 140 |
-
Nothing.
|
| 141 |
-
"""
|
| 142 |
-
v1 = np.array( embedding1 ).reshape( 1, -1 )
|
| 143 |
-
v2 = np.array( embedding2 ).reshape( 1, -1 )
|
| 144 |
-
similarity = cosine_similarity( v1, v2 )
|
| 145 |
-
return similarity[0, 0]
|
| 146 |
-
|
| 147 |
def get_distance(embedding1, embedding2):
|
| 148 |
"""
|
| 149 |
Function that returns euclidean distance between
|
|
@@ -181,17 +142,24 @@ def sort_by_similarity(e):
|
|
| 181 |
"""
|
| 182 |
return e['similarity']
|
| 183 |
|
| 184 |
-
def recommend_prompt(
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
"""
|
| 188 |
Function that recommends prompts additions or removals.
|
| 189 |
|
| 190 |
Args:
|
| 191 |
prompt: The entered prompt text.
|
| 192 |
prompt_json: Json file populated with embeddings.
|
| 193 |
-
|
| 194 |
-
|
| 195 |
add_lower_threshold: Lower threshold for sentence addition,
|
| 196 |
the default value is 0.3.
|
| 197 |
add_upper_threshold: Upper threshold for sentence addition,
|
|
@@ -200,7 +168,8 @@ def recommend_prompt(prompt, prompt_json, api_url, headers, add_lower_threshold
|
|
| 200 |
the default value is 0.3.
|
| 201 |
remove_upper_threshold: Upper threshold for sentence removal,
|
| 202 |
the default value is 0.5.
|
| 203 |
-
|
|
|
|
| 204 |
|
| 205 |
Returns:
|
| 206 |
Prompt values to add or remove.
|
|
@@ -210,15 +179,18 @@ def recommend_prompt(prompt, prompt_json, api_url, headers, add_lower_threshold
|
|
| 210 |
"""
|
| 211 |
if(model_id == 'baai/bge-large-en-v1.5' ):
|
| 212 |
json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json'
|
| 213 |
-
|
| 214 |
elif(model_id == 'intfloat/multilingual-e5-large'):
|
| 215 |
json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json'
|
| 216 |
-
|
| 217 |
else: # fall back to all-minilm as default
|
| 218 |
json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'
|
| 219 |
-
|
| 220 |
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
# Output initialization
|
| 224 |
out, out['input'], out['add'], out['remove'] = {}, {}, {}, {}
|
|
@@ -231,63 +203,84 @@ def recommend_prompt(prompt, prompt_json, api_url, headers, add_lower_threshold
|
|
| 231 |
|
| 232 |
# Recommendation of values to add to the current prompt
|
| 233 |
# Using only the last sentence for the add recommendation
|
| 234 |
-
input_embedding =
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
# Dealing with values without prompts and makinig sure they have the same dimensions
|
| 237 |
-
if(len(v['centroid'])
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
# Recommendation of values to remove from the current prompt
|
| 258 |
for sentence in input_sentences:
|
| 259 |
input_embedding = query(sentence, api_url, headers) # remote
|
| 260 |
-
# Obtaining XY coords for input sentences from a
|
| 261 |
if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''):
|
| 262 |
-
embeddings_umap = umap_model.transform(
|
| 263 |
input_items.append({
|
| 264 |
'sentence': sentence,
|
| 265 |
'x': str(embeddings_umap[0][0]),
|
| 266 |
'y': str(embeddings_umap[0][1])
|
| 267 |
})
|
| 268 |
|
| 269 |
-
for v in prompt_json['negative_values']:
|
| 270 |
-
|
| 271 |
-
if(len(v['centroid'])
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
out['input'] = input_items
|
| 293 |
|
|
@@ -310,14 +303,19 @@ def recommend_prompt(prompt, prompt_json, api_url, headers, add_lower_threshold
|
|
| 310 |
out['remove'] = out['remove'][0:5]
|
| 311 |
return out
|
| 312 |
|
| 313 |
-
def get_thresholds(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
"""
|
| 315 |
Function that recommends thresholds given an array of prompts.
|
| 316 |
|
| 317 |
Args:
|
| 318 |
prompts: The array with samples of prompts to be used in the system.
|
| 319 |
prompt_json: Sentences to be forwarded to the recommendation endpoint.
|
| 320 |
-
|
|
|
|
| 321 |
|
| 322 |
Returns:
|
| 323 |
A map with thresholds for the sample prompts and the informed model.
|
|
@@ -325,14 +323,15 @@ def get_thresholds(prompts, prompt_json, api_url, headers, model_id = 'sentence-
|
|
| 325 |
Raises:
|
| 326 |
Nothing.
|
| 327 |
"""
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
|
|
|
| 331 |
add_similarities = []
|
| 332 |
remove_similarities = []
|
| 333 |
|
| 334 |
for p_id, p in enumerate(prompts):
|
| 335 |
-
out = recommend_prompt(p, prompt_json,
|
| 336 |
|
| 337 |
for r in out['add']:
|
| 338 |
add_similarities.append(r['similarity'])
|
|
@@ -371,15 +370,18 @@ def recommend_local(prompt, prompt_json, model_id, model_path = './models/all-Mi
|
|
| 371 |
"""
|
| 372 |
if(model_id == 'baai/bge-large-en-v1.5' ):
|
| 373 |
json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json'
|
| 374 |
-
|
| 375 |
elif(model_id == 'intfloat/multilingual-e5-large'):
|
| 376 |
json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json'
|
| 377 |
-
|
| 378 |
else: # fall back to all-minilm as default
|
| 379 |
json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'
|
| 380 |
-
|
| 381 |
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
# Output initialization
|
| 385 |
out, out['input'], out['add'], out['remove'] = {}, {}, {}, {}
|
|
@@ -418,9 +420,9 @@ def recommend_local(prompt, prompt_json, model_id, model_path = './models/all-Mi
|
|
| 418 |
# Recommendation of values to remove from the current prompt
|
| 419 |
for sentence in input_sentences:
|
| 420 |
input_embedding = model.encode(sentence) # local
|
| 421 |
-
# Obtaining XY coords for input sentences from a
|
| 422 |
if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''):
|
| 423 |
-
embeddings_umap = umap_model.transform(
|
| 424 |
input_items.append({
|
| 425 |
'sentence': sentence,
|
| 426 |
'x': str(embeddings_umap[0][0]),
|
|
@@ -469,4 +471,4 @@ def recommend_local(prompt, prompt_json, model_id, model_path = './models/all-Mi
|
|
| 469 |
else:
|
| 470 |
values_map[item['value']] = item['similarity']
|
| 471 |
out['remove'] = out['remove'][0:5]
|
| 472 |
-
return out
|
|
|
|
| 29 |
import json
|
| 30 |
import math
|
| 31 |
import re
|
|
|
|
| 32 |
import pandas as pd
|
| 33 |
import numpy as np
|
| 34 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
| 36 |
#os.environ['TRANSFORMERS_CACHE'] ="./models/allmini/cache"
|
| 37 |
import os.path
|
| 38 |
from sentence_transformers import SentenceTransformer
|
| 39 |
+
import pickle
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json',
|
| 42 |
existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'):
|
|
|
|
| 60 |
json_file = json_file_path
|
| 61 |
if(os.path.isfile(existing_json_populated_file_path)):
|
| 62 |
json_file = existing_json_populated_file_path
|
| 63 |
+
prompt_json = json.load(open(json_file))
|
| 64 |
+
return prompt_json
|
| 65 |
+
|
| 66 |
+
def get_embedding_func(inference = 'huggingface', **kwargs):
|
| 67 |
+
if inference == 'local':
|
| 68 |
+
if 'model_id' not in kwargs:
|
| 69 |
+
raise TypeError("Missing required argument: model_id")
|
| 70 |
+
model = SentenceTransformer(kwargs['model_id'])
|
| 71 |
+
|
| 72 |
+
def embedding_fn(texts):
|
| 73 |
+
return model.encode(texts).tolist()
|
| 74 |
+
|
| 75 |
+
elif inference == 'huggingface':
|
| 76 |
+
if 'api_url' not in kwargs:
|
| 77 |
+
raise TypeError("Missing required argument: api_url")
|
| 78 |
+
if 'headers' not in kwargs:
|
| 79 |
+
raise TypeError("Missing required argument: headers")
|
| 80 |
+
|
| 81 |
+
def embedding_fn(texts):
|
| 82 |
+
response = requests.post(kwargs['api_url'], headers=kwargs['headers'], json={"inputs": texts, "options":{"wait_for_model":True}})
|
| 83 |
+
return response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
+
raise ValueError(f"Inference type {inference} is not supported. Please choose one of ['local', 'huggingface'].")
|
| 86 |
+
|
| 87 |
+
return embedding_fn
|
| 88 |
|
| 89 |
def split_into_sentences(prompt):
|
| 90 |
"""
|
|
|
|
| 105 |
sentences = re.split(r'(?<=[.!?]) +', prompt)
|
| 106 |
return sentences
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
def get_distance(embedding1, embedding2):
|
| 109 |
"""
|
| 110 |
Function that returns euclidean distance between
|
|
|
|
| 142 |
"""
|
| 143 |
return e['similarity']
|
| 144 |
|
| 145 |
+
def recommend_prompt(
|
| 146 |
+
prompt,
|
| 147 |
+
prompt_json,
|
| 148 |
+
embedding_fn = None,
|
| 149 |
+
add_lower_threshold = 0.3,
|
| 150 |
+
add_upper_threshold = 0.5,
|
| 151 |
+
remove_lower_threshold = 0.1,
|
| 152 |
+
remove_upper_threshold = 0.5,
|
| 153 |
+
umap_model = None
|
| 154 |
+
):
|
| 155 |
"""
|
| 156 |
Function that recommends prompts additions or removals.
|
| 157 |
|
| 158 |
Args:
|
| 159 |
prompt: The entered prompt text.
|
| 160 |
prompt_json: Json file populated with embeddings.
|
| 161 |
+
embedding_fn: Embedding function to convert prompt sentences into embeddings.
|
| 162 |
+
If None, uses all-MiniLM-L6-v2 run locally.
|
| 163 |
add_lower_threshold: Lower threshold for sentence addition,
|
| 164 |
the default value is 0.3.
|
| 165 |
add_upper_threshold: Upper threshold for sentence addition,
|
|
|
|
| 168 |
the default value is 0.3.
|
| 169 |
remove_upper_threshold: Upper threshold for sentence removal,
|
| 170 |
the default value is 0.5.
|
| 171 |
+
umap_model: Umap model used for visualization.
|
| 172 |
+
If None, the projected embeddings of input sentences will not be returned.
|
| 173 |
|
| 174 |
Returns:
|
| 175 |
Prompt values to add or remove.
|
|
|
|
| 179 |
"""
|
| 180 |
if(model_id == 'baai/bge-large-en-v1.5' ):
|
| 181 |
json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json'
|
| 182 |
+
umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl'
|
| 183 |
elif(model_id == 'intfloat/multilingual-e5-large'):
|
| 184 |
json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json'
|
| 185 |
+
umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl'
|
| 186 |
else: # fall back to all-minilm as default
|
| 187 |
json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'
|
| 188 |
+
umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl'
|
| 189 |
|
| 190 |
+
with open(umap_model_file, 'rb') as f:
|
| 191 |
+
umap_model = pickle.load(f)
|
| 192 |
+
|
| 193 |
+
prompt_json = json.load( open( json_file ) )
|
| 194 |
|
| 195 |
# Output initialization
|
| 196 |
out, out['input'], out['add'], out['remove'] = {}, {}, {}, {}
|
|
|
|
| 203 |
|
| 204 |
# Recommendation of values to add to the current prompt
|
| 205 |
# Using only the last sentence for the add recommendation
|
| 206 |
+
input_embedding = embedding_fn(input_sentences[-1])
|
| 207 |
+
input_embedding = np.array(input_embedding)
|
| 208 |
+
|
| 209 |
+
sentence_embeddings = np.array(
|
| 210 |
+
[v['centroid'] for v in prompt_json['positive_values']]
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
similarities_positive_sent = cosine_similarity(np.expand_dims(input_embedding, axis=0), sentence_embeddings)[0, :]
|
| 214 |
+
|
| 215 |
+
for value_idx, v in enumerate(prompt_json['positive_values']):
|
| 216 |
# Dealing with values without prompts and makinig sure they have the same dimensions
|
| 217 |
+
if(len(v['centroid']) != len(input_embedding)):
|
| 218 |
+
continue
|
| 219 |
+
|
| 220 |
+
if(similarities_positive_sent[value_idx] < add_lower_threshold):
|
| 221 |
+
continue
|
| 222 |
+
|
| 223 |
+
value_sents_similarity = cosine_similarity(
|
| 224 |
+
np.expand_dims(input_embedding, axis=0),
|
| 225 |
+
np.array([p['embedding'] for p in v['prompts']])
|
| 226 |
+
)[0, :]
|
| 227 |
+
closer_prompt_idxs = np.nonzero((add_lower_threshold < value_sents_similarity) & (value_sents_similarity < add_upper_threshold))[0]
|
| 228 |
+
|
| 229 |
+
for idx in closer_prompt_idxs:
|
| 230 |
+
items_to_add.append({
|
| 231 |
+
'value': v['label'],
|
| 232 |
+
'prompt': v['prompts'][idx]['text'],
|
| 233 |
+
'similarity': value_sents_similarity[idx],
|
| 234 |
+
'x': v['prompts'][idx]['x'],
|
| 235 |
+
'y': v['prompts'][idx]['y']
|
| 236 |
+
})
|
| 237 |
+
out['add'] = items_to_add
|
| 238 |
|
| 239 |
+
inp_sentence_embeddings = np.array([embedding_fn(sent) for sent in input_sentences])
|
| 240 |
+
pairwise_similarities = cosine_similarity(
|
| 241 |
+
inp_sentence_embeddings,
|
| 242 |
+
np.array([v['centroid'] for v in prompt_json['negative_values']])
|
| 243 |
+
)
|
| 244 |
|
| 245 |
# Recommendation of values to remove from the current prompt
|
| 246 |
for sentence in input_sentences:
|
| 247 |
input_embedding = query(sentence, api_url, headers) # remote
|
| 248 |
+
# Obtaining XY coords for input sentences from a UMAP model
|
| 249 |
if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''):
|
| 250 |
+
embeddings_umap = umap_model.transform(np.expand_dims(pd.DataFrame(input_embedding).squeeze(), axis=0))
|
| 251 |
input_items.append({
|
| 252 |
'sentence': sentence,
|
| 253 |
'x': str(embeddings_umap[0][0]),
|
| 254 |
'y': str(embeddings_umap[0][1])
|
| 255 |
})
|
| 256 |
|
| 257 |
+
for value_idx, v in enumerate(prompt_json['negative_values']):
|
| 258 |
+
# Dealing with values without prompts and making sure they have the same dimensions
|
| 259 |
+
if(len(v['centroid']) != len(input_embedding)):
|
| 260 |
+
continue
|
| 261 |
+
if(pairwise_similarities[sent_idx][value_idx] < remove_lower_threshold):
|
| 262 |
+
continue
|
| 263 |
+
|
| 264 |
+
# A more restrict threshold is used here to prevent false positives
|
| 265 |
+
# The sentence_threshold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts
|
| 266 |
+
# So, yes, we want to recommend the removal of something adversarial we've found
|
| 267 |
+
value_sents_similarity = cosine_similarity(
|
| 268 |
+
np.expand_dims(input_embedding, axis=0),
|
| 269 |
+
np.array([p['embedding'] for p in v['prompts']])
|
| 270 |
+
)[0, :]
|
| 271 |
+
closer_prompt_idxs = np.nonzero(value_sents_similarity > remove_upper_threshold)[0]
|
| 272 |
+
|
| 273 |
+
for idx in closer_prompt_idxs:
|
| 274 |
+
items_to_remove.append({
|
| 275 |
+
'value': v['label'],
|
| 276 |
+
'sentence': sentence,
|
| 277 |
+
'sentence_index': sent_idx,
|
| 278 |
+
'closest_harmful_sentence': v['prompts'][idx]['text'],
|
| 279 |
+
'similarity': value_sents_similarity[idx],
|
| 280 |
+
'x': v['prompts'][idx]['x'],
|
| 281 |
+
'y': v['prompts'][idx]['y']
|
| 282 |
+
})
|
| 283 |
+
out['remove'] = items_to_remove
|
| 284 |
|
| 285 |
out['input'] = input_items
|
| 286 |
|
|
|
|
| 303 |
out['remove'] = out['remove'][0:5]
|
| 304 |
return out
|
| 305 |
|
| 306 |
+
def get_thresholds(
|
| 307 |
+
prompts,
|
| 308 |
+
prompt_json,
|
| 309 |
+
embedding_fn = None,
|
| 310 |
+
):
|
| 311 |
"""
|
| 312 |
Function that recommends thresholds given an array of prompts.
|
| 313 |
|
| 314 |
Args:
|
| 315 |
prompts: The array with samples of prompts to be used in the system.
|
| 316 |
prompt_json: Sentences to be forwarded to the recommendation endpoint.
|
| 317 |
+
embedding_fn: Embedding function to convert prompt sentences into embeddings.
|
| 318 |
+
If None, uses all-MiniLM-L6-v2 run locally.
|
| 319 |
|
| 320 |
Returns:
|
| 321 |
A map with thresholds for the sample prompts and the informed model.
|
|
|
|
| 323 |
Raises:
|
| 324 |
Nothing.
|
| 325 |
"""
|
| 326 |
+
|
| 327 |
+
if embedding_fn is None:
|
| 328 |
+
embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2')
|
| 329 |
+
|
| 330 |
add_similarities = []
|
| 331 |
remove_similarities = []
|
| 332 |
|
| 333 |
for p_id, p in enumerate(prompts):
|
| 334 |
+
out = recommend_prompt(p, prompt_json, embedding_fn, 0, 1, 0, 0, None) # Wider possible range
|
| 335 |
|
| 336 |
for r in out['add']:
|
| 337 |
add_similarities.append(r['similarity'])
|
|
|
|
| 370 |
"""
|
| 371 |
if(model_id == 'baai/bge-large-en-v1.5' ):
|
| 372 |
json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json'
|
| 373 |
+
umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl'
|
| 374 |
elif(model_id == 'intfloat/multilingual-e5-large'):
|
| 375 |
json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json'
|
| 376 |
+
umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl'
|
| 377 |
else: # fall back to all-minilm as default
|
| 378 |
json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'
|
| 379 |
+
umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl'
|
| 380 |
|
| 381 |
+
with open(umap_model_file, 'rb') as f:
|
| 382 |
+
umap_model = pickle.load(f)
|
| 383 |
+
|
| 384 |
+
prompt_json = json.load( open( json_file ) )
|
| 385 |
|
| 386 |
# Output initialization
|
| 387 |
out, out['input'], out['add'], out['remove'] = {}, {}, {}, {}
|
|
|
|
| 420 |
# Recommendation of values to remove from the current prompt
|
| 421 |
for sentence in input_sentences:
|
| 422 |
input_embedding = model.encode(sentence) # local
|
| 423 |
+
# Obtaining XY coords for input sentences from a UMAP model
|
| 424 |
if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''):
|
| 425 |
+
embeddings_umap = umap_model.transform(np.expand_dims(pd.DataFrame(input_embedding).squeeze(), axis=0))
|
| 426 |
input_items.append({
|
| 427 |
'sentence': sentence,
|
| 428 |
'x': str(embeddings_umap[0][0]),
|
|
|
|
| 471 |
else:
|
| 472 |
values_map[item['value']] = item['similarity']
|
| 473 |
out['remove'] = out['remove'][0:5]
|
| 474 |
+
return out
|