Spaces:
Build error
Build error
| """InstantID × Beautiful Realistic Asians v7 (ZeroGPU‑friendly, persistent cache) | |
| ポイント | |
| --------- | |
| * **import spaces を最初に**して ZeroGPU パッチを確実に適用。 | |
| * グローバル領域では CPU でモデルをロードし、CUDA への移動は | |
| `@spaces.GPU` 関数内で一度だけ実行。 | |
| * `.to("cuda")` や `torch.cuda.*` を関数外に置かないことで | |
| `RuntimeError: No CUDA GPUs are available` を回避。 | |
| """ | |
| # --------------------------------------------------------------------------- | |
| # 0. 依存ライブラリの読み込み (ZeroGPU パッチ → PyTorch の順) | |
| # --------------------------------------------------------------------------- | |
| import spaces # ⭐ ZeroGPU は torch より前に必須 | |
| # --- ★ Monkey‑Patch: torchvision 0.17+ で消えた functional_tensor を補完 --- | |
| import types, sys | |
| from torchvision.transforms import functional as F | |
| mod = types.ModuleType("torchvision.transforms.functional_tensor") | |
| mod.rgb_to_grayscale = F.rgb_to_grayscale | |
| sys.modules["torchvision.transforms.functional_tensor"] = mod | |
| # --------------------------------------------------------------------------- | |
| import os, subprocess, cv2, torch, gradio as gr, numpy as np | |
| from pathlib import Path | |
| from PIL import Image | |
| from diffusers import ( | |
| StableDiffusionPipeline, | |
| ControlNetModel, | |
| DPMSolverMultistepScheduler, | |
| AutoencoderKL, | |
| ) | |
| from compel import Compel | |
| from insightface.app import FaceAnalysis | |
| # --------------------------------------------------------------------------- | |
| # 1. キャッシュ用ディレクトリ | |
| # --------------------------------------------------------------------------- | |
| PERSIST_BASE = Path("/data") | |
| CACHE_ROOT = ( | |
| PERSIST_BASE / "instantid_cache" | |
| if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK) | |
| else Path.home() / ".cache" / "instantid_cache" | |
| ) | |
| print("cache →", CACHE_ROOT) | |
| MODELS_DIR = CACHE_ROOT / "models" | |
| LORA_DIR = MODELS_DIR / "Lora" # FaceID LoRA などを置く | |
| EMB_DIR = CACHE_ROOT / "embeddings" | |
| UPSCALE_DIR = CACHE_ROOT / "realesrgan" | |
| for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR): | |
| p.mkdir(parents=True, exist_ok=True) | |
| def dl(url: str, dst: Path, attempts: int = 2): | |
| """wget + リトライの簡易ダウンローダ""" | |
| if dst.exists(): | |
| print("✓", dst.relative_to(CACHE_ROOT)); return | |
| for i in range(1, attempts + 1): | |
| print(f"⬇ {dst.name} (try {i}/{attempts})") | |
| if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0: | |
| return | |
| raise RuntimeError(f"download failed → {url}") | |
| # --------------------------------------------------------------------------- | |
| # 2. 必要アセットのダウンロード | |
| # --------------------------------------------------------------------------- | |
| print("— asset check —") | |
| # 2‑A. ベース checkpoint | |
| BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors" | |
| dl( | |
| "https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", | |
| BASE_CKPT, | |
| ) | |
| # 2‑B. FaceID LoRA(Δのみ) | |
| LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors" | |
| dl( | |
| "https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", | |
| LORA_FILE, | |
| ) | |
| # 2‑C. textual inversion Embeddings | |
| EMB_URLS = { | |
| "ng_deepnegative_v1_75t.pt": [ | |
| "https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt", | |
| "https://huggingface.co/mrpxl2/animetarotV51.safetensors/raw/cc3008c0148061896549a995cc297aef0af4ef1b/ng_deepnegative_v1_75t.pt", | |
| ], | |
| "badhandv4.pt": [ | |
| "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/badhandv4.pt", | |
| "https://huggingface.co/nolanaatama/embeddings/raw/main/badhandv4.pt", | |
| ], | |
| "CyberRealistic_Negative-neg.pt": [ | |
| "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/CyberRealistic_Negative-neg.pt", | |
| "https://huggingface.co/wsj1995/embeddings/raw/main/CyberRealistic_Negative-neg.civitai.info", | |
| ], | |
| "UnrealisticDream.pt": [ | |
| "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/UnrealisticDream.pt", | |
| "https://huggingface.co/imagepipeline/UnrealisticDream/raw/main/f84133b4-aad8-44be-b9ce-7e7e3a8c111f.pt", | |
| ], | |
| } | |
| for fname, urls in EMB_URLS.items(): | |
| dst = EMB_DIR / fname | |
| for idx, u in enumerate(urls, 1): | |
| try: | |
| dl(u, dst); break | |
| except RuntimeError: | |
| if idx == len(urls): raise | |
| print(" ↳ fallback URL …") | |
| # 2‑D. Real‑ESRGAN weights (×8) | |
| RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth" | |
| RRG_URLS = [ | |
| "https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth", | |
| "https://huggingface.co/ai-forever/Real-ESRGAN/raw/main/RealESRGAN_x8.pth", | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/8x_NMKD-Superscale_100k.pth", | |
| ] | |
| for idx, link in enumerate(RRG_URLS, 1): | |
| try: | |
| dl(link, RRG_WEIGHTS); break | |
| except RuntimeError: | |
| if idx == len(RRG_URLS): raise | |
| print(" ↳ fallback URL …") | |
| # --------------------------------------------------------------------------- | |
| # 3. モデル読み込み (すべて CPU) | |
| # --------------------------------------------------------------------------- | |
| device: str = "cpu" # グローバルは CPU 固定 | |
| dtype = torch.float32 # 後で GPU 化する際に float16 に | |
| # FaceAnalysis (insightface) | |
| providers = ["CPUExecutionProvider"] | |
| face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers) | |
| face_app.prepare(ctx_id=-1, det_size=(640, 640)) | |
| # Stable Diffusion Pipeline (CPU) | |
| pipe = StableDiffusionPipeline.from_single_file( | |
| BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2 | |
| ) | |
| pipe.vae = AutoencoderKL.from_pretrained( | |
| "stabilityai/sd-vae-ft-mse", torch_dtype=dtype | |
| ) | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config( | |
| pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++" | |
| ) | |
| pipe.load_ip_adapter( | |
| "h94/IP-Adapter", | |
| subfolder="models", | |
| weight_name="ip-adapter-plus-face_sd15.bin", | |
| ) | |
| pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name) | |
| pipe.set_ip_adapter_scale(0.65) | |
| # textual inversion | |
| for emb in EMB_DIR.glob("*.*"): | |
| try: | |
| pipe.load_textual_inversion(emb, token=emb.stem) | |
| print("emb loaded →", emb.stem) | |
| except Exception: | |
| print("emb skip →", emb.name) | |
| # Real‑ESRGAN (CPU) | |
| try: | |
| from basicsr.archs.rrdb_arch import RRDBNet | |
| try: | |
| from realesrgan import RealESRGAN | |
| except ImportError: | |
| from realesrgan import RealESRGANer as RealESRGAN | |
| rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8) | |
| upsampler = RealESRGAN("cpu", rrdb, scale=8) | |
| upsampler.load_weights(str(RRG_WEIGHTS)) | |
| UPSCALE_OK = True | |
| except Exception as e: | |
| print("Real-ESRGAN disabled →", e) | |
| UPSCALE_OK = False | |
| # compel | |
| compel_proc = Compel( | |
| tokenizer=pipe.tokenizer, | |
| text_encoder=pipe.text_encoder, | |
| truncate_long_prompts=False, | |
| ) | |
| print("pipeline ready (CPU) ✔") | |
| # --------------------------------------------------------------------------- | |
| # 4. プロンプト定義 | |
| # --------------------------------------------------------------------------- | |
| BASE_PROMPT = ( | |
| "Cinematic photo, (best quality:1.1), ultra-realistic, photorealistic of {subject}, " | |
| "natural skin texture, bokeh, standing, front view, full body shot, thighs, " | |
| "Canon EOS R5, 85 mm, f/1.4, ISO 200, 1/160 s, RAW" | |
| ) | |
| NEG_PROMPT = ( | |
| "ng_deepnegative_v1_75t, BadDream:0.6, UnrealisticDream:0.8, badhandv4:0.9, " | |
| "(worst quality:2), (low quality:1.8), lowres, blurry, jpeg artifacts, " | |
| "painting, sketch, illustration, cartoon, anime, cgi, render, 3d, " | |
| "monochrome, grayscale, text, logo, watermark, signature, username, " | |
| "bad anatomy, malformed, deformed, extra limbs, fused fingers, missing fingers, " | |
| "missing arms, missing legs, skin blemishes, acne, age spot" | |
| ) | |
| # --------------------------------------------------------------------------- | |
| # 5. 生成関数 (GPU 処理部) | |
| # --------------------------------------------------------------------------- | |
| GPU_INITIALISED = False # 一度だけ GPU へ移動するためのフラグ | |
| def generate( | |
| face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| global GPU_INITIALISED, device, dtype, pipe, face_app, upsampler | |
| if not GPU_INITIALISED: | |
| print("\n--- first GPU initialisation ---") | |
| device = "cuda" | |
| dtype = torch.float16 | |
| pipe.to(device) | |
| pipe.vae.to(device) | |
| face_app.prepare(ctx_id=0, det_size=(640, 640)) | |
| if UPSCALE_OK: | |
| try: | |
| upsampler.model = upsampler.model.to(device) # RealESRGANer | |
| upsampler.device = device # for newer API | |
| except Exception: | |
| pass | |
| GPU_INITIALISED = True | |
| print("GPU ready ✔") | |
| if face_np is None or face_np.size == 0: | |
| raise gr.Error("顔画像をアップロードしてください。") | |
| prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman")) | |
| if add_prompt: | |
| prompt += ", " + add_prompt | |
| neg = NEG_PROMPT + (", " + add_neg if add_neg else "") | |
| pipe.set_ip_adapter_scale(ip_scale) | |
| img_in = Image.fromarray(face_np) | |
| # compel で長さを揃えバッチ化 | |
| prompt_embeds, negative_prompt_embeds = compel_proc([prompt, neg]) | |
| prompt_embeds = prompt_embeds.unsqueeze(0) | |
| negative_prompt_embeds = negative_prompt_embeds.unsqueeze(0) | |
| result = pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ip_adapter_image=img_in, | |
| num_inference_steps=int(steps) + 5, | |
| guidance_scale=cfg, | |
| width=int(w), | |
| height=int(h), | |
| ).images[0] | |
| if upscale: | |
| if UPSCALE_OK: | |
| up, _ = upsampler.enhance( | |
| cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor | |
| ) | |
| result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB)) | |
| else: | |
| result = result.resize( | |
| (int(result.width * up_factor), int(result.height * up_factor)), | |
| Image.LANCZOS, | |
| ) | |
| return result | |
| # --------------------------------------------------------------------------- | |
| # 6. Gradio UI | |
| # --------------------------------------------------------------------------- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# InstantID – Beautiful Realistic Asians v7 (ZeroGPU edition)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| face_in = gr.Image(label="顔写真", type="numpy") | |
| subj_in = gr.Textbox(label="被写体説明", placeholder="e.g. woman in black suit, smiling") | |
| add_in = gr.Textbox(label="追加プロンプト") | |
| addneg_in = gr.Textbox(label="追加ネガティブ") | |
| ip_sld = gr.Slider(0, 1.5, 0.65, step=0.05, label="IP-Adapter scale") | |
| cfg_sld = gr.Slider(1, 15, 6, step=0.5, label="CFG") | |
| step_sld = gr.Slider(10, 50, 20, step=1, label="Steps") | |
| w_sld = gr.Slider(512, 1024, 512, step=64, label="幅") | |
| h_sld = gr.Slider(512, 1024, 768, step=64, label="高さ") | |
| up_ck = gr.Checkbox(label="アップスケール", value=True) | |
| up_fac = gr.Slider(1, 8, 2, step=1, label="倍率") | |
| btn = gr.Button("生成", variant="primary") | |
| with gr.Column(): | |
| out_img = gr.Image(label="結果") | |
| btn.click( | |
| generate, | |
| [face_in, subj_in, add_in, addneg_in, cfg_sld, ip_sld, step_sld, w_sld, h_sld, up_ck, up_fac], | |
| out_img, | |
| api_name="predict", | |
| ) | |
| print("launching …") | |