Spaces:
Runtime error
Runtime error
| import os | |
| from flask import Flask, request | |
| import requests | |
| from gradio_client import Client | |
| import base64 | |
| from PIL import Image | |
| from io import BytesIO | |
| import base64 | |
| import os | |
| from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
| from diffusers.utils import load_image | |
| import torch | |
| import gradio as gr | |
| controlnet = ControlNetModel.from_pretrained("rgres/sd-controlnet-aerialdreams", torch_dtype=torch.float16) | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe = pipe.to("cuda") | |
| # CPU offloading for faster inference times | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_model_cpu_offload() | |
| app = Flask(__name__, static_url_path='/static') | |
| def index(): | |
| return app.send_static_file('index.html') | |
| def save_base64_image(base64Image): | |
| image_data = base64.b64decode(base64Image) | |
| path = "input_image.jpg" | |
| with open(path, 'wb') as f: | |
| f.write(image_data) | |
| return path | |
| def encode_image_to_base64(filepath): | |
| with open(filepath, "rb") as image_file: | |
| encoded_image = base64.b64encode(image_file.read()).decode("utf-8") | |
| return encoded_image | |
| def generate_map(image, prompt, steps, seed): | |
| #image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
| generator = torch.manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| num_inference_steps=steps, | |
| image=image | |
| ).images[0] | |
| return image | |
| def predict(): | |
| data = request.get_json() | |
| base64Image = data['data'][0] | |
| prompt = data['data'][1] | |
| steps = data['data'][2] | |
| seed = data['data'][3] | |
| b64meta, b64_data = base64Image.split(',') | |
| image = Image.open(BytesIO(base64.b64decode(b64_data))) | |
| return generate_map(image, prompt, steps, seed) | |
| if __name__ == '__main__': | |
| app.run(host='0.0.0.0', port=int( | |
| os.environ.get('D2M_PORT', 8000)), debug=True) | |