adding fig
Browse files- app.py +39 -14
- src/paired_texts_modelling.py +0 -2
app.py
CHANGED
|
@@ -1,31 +1,43 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import time
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
|
| 7 |
from src.infer import load_model, predict
|
| 8 |
|
| 9 |
-
os.environ.setdefault("HF_HOME", "/
|
| 10 |
|
| 11 |
_model = None
|
| 12 |
-
_ckpt_path = None
|
| 13 |
|
| 14 |
def _warmup():
|
| 15 |
-
global _model
|
| 16 |
if _model is not None:
|
| 17 |
return
|
| 18 |
t0 = time.time()
|
| 19 |
-
|
| 20 |
repo_id="rhasan/UPLME",
|
| 21 |
filename="UPLME_NewsEmp_tuned-lambdas.ckpt",
|
| 22 |
-
repo_type="model"
|
| 23 |
-
local_dir="/data/uplme_ckpt"
|
| 24 |
)
|
| 25 |
-
load_model(
|
| 26 |
return f"Model loaded in {time.time() - t0:.1f} seconds."
|
| 27 |
|
| 28 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
_warmup()
|
| 30 |
mean, var = predict(essay, article)
|
| 31 |
# scores were originally in [1, 7]
|
|
@@ -35,21 +47,34 @@ def predict_with_ci(essay: str, article: str) -> tuple[float, float, float]:
|
|
| 35 |
std = np.sqrt(var)
|
| 36 |
ci_low = max(0.0, mean - 1.96 * std)
|
| 37 |
ci_upp = min(100.0, mean + 1.96 * std)
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
with gr.Blocks(title="
|
| 41 |
gr.Markdown("# Empathy Prediction with Uncertainty Estimation")
|
| 42 |
with gr.Row():
|
| 43 |
with gr.Column():
|
| 44 |
-
essay_input = gr.Textbox(label="Essay", lines=10, placeholder="Enter the essay text here...")
|
| 45 |
-
article_input = gr.Textbox(label="Article", lines=10, placeholder="Enter the article text here...")
|
| 46 |
button = gr.Button("Predict")
|
| 47 |
with gr.Column():
|
| 48 |
-
output_mean = gr.Number(label="Predicted Empathy
|
| 49 |
ci_low = gr.Number(label="95% CI Lower Bound", precision=2)
|
| 50 |
ci_upp = gr.Number(label="95% CI Upper Bound", precision=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
if __name__ == "__main__":
|
| 55 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
import time
|
| 4 |
import gradio as gr
|
| 5 |
+
from gadio.themes import Soft
|
| 6 |
import numpy as np
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
from src.infer import load_model, predict
|
| 11 |
|
| 12 |
+
os.environ.setdefault("HF_HOME", str(Path.home() / ".cache" / "huggingface"))
|
| 13 |
|
| 14 |
_model = None
|
|
|
|
| 15 |
|
| 16 |
def _warmup():
|
| 17 |
+
global _model
|
| 18 |
if _model is not None:
|
| 19 |
return
|
| 20 |
t0 = time.time()
|
| 21 |
+
ckpt_path = hf_hub_download(
|
| 22 |
repo_id="rhasan/UPLME",
|
| 23 |
filename="UPLME_NewsEmp_tuned-lambdas.ckpt",
|
| 24 |
+
repo_type="model"
|
|
|
|
| 25 |
)
|
| 26 |
+
load_model(ckpt_path)
|
| 27 |
return f"Model loaded in {time.time() - t0:.1f} seconds."
|
| 28 |
|
| 29 |
+
def ci_plot(mean: float, low: float, upp: float):
|
| 30 |
+
fig, ax = plt.subplots(figsize=(6, 1))
|
| 31 |
+
ax.hlines(1, 0, 100, linewidht=2, alpha=0.15)
|
| 32 |
+
ax.hlines(1, low, upp, linewidht=6)
|
| 33 |
+
ax.plot([mean], [1], "o")
|
| 34 |
+
ax.set_xlim(0, 100)
|
| 35 |
+
ax.set_yticks([])
|
| 36 |
+
ax.set_xlabel("Empathy Score (0-100)")
|
| 37 |
+
fig.tight_layout()
|
| 38 |
+
return fig
|
| 39 |
+
|
| 40 |
+
def predict_with_ci(essay: str, article: str) -> tuple[float, float, float, plt.Figure]:
|
| 41 |
_warmup()
|
| 42 |
mean, var = predict(essay, article)
|
| 43 |
# scores were originally in [1, 7]
|
|
|
|
| 47 |
std = np.sqrt(var)
|
| 48 |
ci_low = max(0.0, mean - 1.96 * std)
|
| 49 |
ci_upp = min(100.0, mean + 1.96 * std)
|
| 50 |
+
fig = ci_plot(mean, ci_low, ci_upp)
|
| 51 |
+
return mean, ci_low, ci_upp, fig
|
| 52 |
+
|
| 53 |
|
| 54 |
+
with gr.Blocks(title="UPLME", theme=Soft(primary_hue="blue")) as demo:
|
| 55 |
gr.Markdown("# Empathy Prediction with Uncertainty Estimation")
|
| 56 |
with gr.Row():
|
| 57 |
with gr.Column():
|
| 58 |
+
essay_input = gr.Textbox(label="Response (E.g., Essay)", lines=10, placeholder="Enter the essay text here...")
|
| 59 |
+
article_input = gr.Textbox(label="Stimulus (E.g., News Article)", lines=10, placeholder="Enter the article text here...")
|
| 60 |
button = gr.Button("Predict")
|
| 61 |
with gr.Column():
|
| 62 |
+
output_mean = gr.Number(label="Predicted Empathy Score", precision=2)
|
| 63 |
ci_low = gr.Number(label="95% CI Lower Bound", precision=2)
|
| 64 |
ci_upp = gr.Number(label="95% CI Upper Bound", precision=2)
|
| 65 |
+
|
| 66 |
+
fig = gr.Plot(label="Prediction +/- 95% CI")
|
| 67 |
+
|
| 68 |
+
button.click(fn=predict_with_ci, inputs=[essay_input, article_input], outputs=[output_mean, ci_low, ci_upp, fig])
|
| 69 |
|
| 70 |
+
gr.Markdown("## About")
|
| 71 |
+
gr.Markdown("""
|
| 72 |
+
This application predicts empathy score using the UPLME model proposed in **UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression** by **Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman and Tom Gedeon**.
|
| 73 |
+
The model provides both a mean empathy score and uncertainty estimates.
|
| 74 |
+
- **Response**: The text input representing the individual's response (e.g., essay).
|
| 75 |
+
- **Stimulus**: The text input representing the stimulus (e.g. newspaper article) that the response is based on.
|
| 76 |
+
- **Predicted Empathy**: The predicted empathy score on a scale from 0 to 100.
|
| 77 |
+
""")
|
| 78 |
|
| 79 |
if __name__ == "__main__":
|
| 80 |
demo.launch()
|
src/paired_texts_modelling.py
CHANGED
|
@@ -120,5 +120,3 @@ class LitPairedTextModel(L.LightningModule):
|
|
| 120 |
for m in self.model.modules():
|
| 121 |
if isinstance(m, torch.nn.Dropout):
|
| 122 |
m.train()
|
| 123 |
-
|
| 124 |
-
|
|
|
|
| 120 |
for m in self.model.modules():
|
| 121 |
if isinstance(m, torch.nn.Dropout):
|
| 122 |
m.train()
|
|
|
|
|
|