infer working locally - first try at HF
Browse files- app.py +54 -0
- requirements.txt +6 -0
- src/infer.py +38 -0
- src/paired_texts_modelling.py +131 -0
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
|
| 7 |
+
from src.infer import load_model, predict
|
| 8 |
+
|
| 9 |
+
os.environ.setdefault("HF_HOME", "/data/.huggingface")
|
| 10 |
+
|
| 11 |
+
_model = None
|
| 12 |
+
_ckpt_path = None
|
| 13 |
+
|
| 14 |
+
def _warmup():
|
| 15 |
+
global _model, _ckpt_path
|
| 16 |
+
if _model is not None:
|
| 17 |
+
return
|
| 18 |
+
t0 = time.time()
|
| 19 |
+
_ckpt_path = hf_hub_download(
|
| 20 |
+
repo_id="rhasan/empathy",
|
| 21 |
+
filename="UPLME_NewsEmp_tuned-lambdas.ckpt",
|
| 22 |
+
repo_type="model",
|
| 23 |
+
local_dir="/data/uplme_ckpt"
|
| 24 |
+
)
|
| 25 |
+
load_model(_ckpt_path)
|
| 26 |
+
return f"Model loaded in {time.time() - t0:.1f} seconds."
|
| 27 |
+
|
| 28 |
+
def predict_with_ci(essay: str, article: str) -> dict:
|
| 29 |
+
_warmup()
|
| 30 |
+
mean, var = predict(essay, article)
|
| 31 |
+
# scores were originally in [1, 7]
|
| 32 |
+
# lets scale them to [0, 100]
|
| 33 |
+
mean = (mean - 1) / 6 * 100
|
| 34 |
+
|
| 35 |
+
std = np.sqrt(var)
|
| 36 |
+
ci_low = max(0.0, mean - 1.96 * std)
|
| 37 |
+
ci_upp = min(100.0, mean + 1.96 * std)
|
| 38 |
+
return {"mean": mean, "ci": (ci_low, ci_upp)}
|
| 39 |
+
|
| 40 |
+
with gr.Blocks(title="Empathy Prediction") as demo:
|
| 41 |
+
gr.Markdown("# Empathy Prediction with Uncertainty Estimation")
|
| 42 |
+
with gr.Row():
|
| 43 |
+
with gr.Column():
|
| 44 |
+
essay_input = gr.Textbox(label="Essay", lines=10, placeholder="Enter the essay text here...")
|
| 45 |
+
article_input = gr.Textbox(label="Article", lines=10, placeholder="Enter the article text here...")
|
| 46 |
+
button = gr.Button("Predict")
|
| 47 |
+
with gr.Column():
|
| 48 |
+
output_mean = gr.Number(label="Predicted Empathy Mean", precision=4)
|
| 49 |
+
ci = gr.Number(label="95\% CI", precision=4)
|
| 50 |
+
|
| 51 |
+
button.click(fn=predict_with_ci, inputs=[essay_input, article_input], outputs=[output_mean, ci])
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio
|
| 4 |
+
lightning
|
| 5 |
+
numpy
|
| 6 |
+
huggingface_hub
|
src/infer.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
FROM https://github.com/hasan-rakibul/UPLME/tree/main
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoTokenizer
|
| 7 |
+
|
| 8 |
+
from paired_texts_modelling import LitPairedTextModel
|
| 9 |
+
|
| 10 |
+
_device = None
|
| 11 |
+
_model = None
|
| 12 |
+
_tokeniser = None
|
| 13 |
+
|
| 14 |
+
def load_model(ckpt_path: str):
|
| 15 |
+
global _model, _tokeniser, _device
|
| 16 |
+
plm_name = "roberta-base"
|
| 17 |
+
_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
+
_model = LitPairedTextModel.load_from_checkpoint(ckpt_path).to(_device).eval()
|
| 19 |
+
_tokeniser = AutoTokenizer.from_pretrained(
|
| 20 |
+
plm_name,
|
| 21 |
+
use_fast=True,
|
| 22 |
+
add_prefix_space=False # the first word is tokenised differently if not a prefix space, but it might decrease performance, so False (09/24)
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
@torch.inference_mode()
|
| 26 |
+
def predict(essay: str, article: str) -> tuple[float, float]:
|
| 27 |
+
max_length = 512
|
| 28 |
+
toks = _tokeniser(
|
| 29 |
+
essay,
|
| 30 |
+
article,
|
| 31 |
+
truncation=True,
|
| 32 |
+
max_length=max_length,
|
| 33 |
+
return_tensors="pt"
|
| 34 |
+
).to(_device)
|
| 35 |
+
mean, var, _ = _model(toks)
|
| 36 |
+
return mean.item(), var.item()
|
| 37 |
+
|
| 38 |
+
|
src/paired_texts_modelling.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
FROM https://github.com/hasan-rakibul/UPLME/tree/main
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import Tensor
|
| 7 |
+
import lightning as L
|
| 8 |
+
from transformers import (
|
| 9 |
+
AutoModel,
|
| 10 |
+
)
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
import lightning as L
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
class CrossEncoderProbModel(torch.nn.Module):
|
| 19 |
+
def __init__(self, plm_name: str):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.model = AutoModel.from_pretrained(plm_name)
|
| 22 |
+
|
| 23 |
+
if plm_name.startswith("roberta"):
|
| 24 |
+
# only applicable for roberta
|
| 25 |
+
self.pooling = "roberta-pooler"
|
| 26 |
+
else:
|
| 27 |
+
self.pooling = "cls"
|
| 28 |
+
|
| 29 |
+
self.out_proj_m = torch.nn.Sequential(
|
| 30 |
+
torch.nn.LayerNorm(self.model.config.hidden_size),
|
| 31 |
+
torch.nn.Dropout(0.25),
|
| 32 |
+
torch.nn.Linear(self.model.config.hidden_size, 1)
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
self.out_proj_v = torch.nn.Sequential(
|
| 36 |
+
torch.nn.LayerNorm(self.model.config.hidden_size),
|
| 37 |
+
torch.nn.Dropout(0.25),
|
| 38 |
+
torch.nn.Linear(self.model.config.hidden_size, 1),
|
| 39 |
+
torch.nn.Softplus()
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
def forward(self, input_ids, attention_mask):
|
| 43 |
+
output = self.model(
|
| 44 |
+
input_ids=input_ids,
|
| 45 |
+
attention_mask=attention_mask
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
if self.pooling == "mean":
|
| 49 |
+
sentence_representation = (
|
| 50 |
+
(output.last_hidden_state * attention_mask.unsqueeze(-1)).sum(-2) /
|
| 51 |
+
attention_mask.sum(dim=-1).unsqueeze(-1)
|
| 52 |
+
)
|
| 53 |
+
elif self.pooling == "cls":
|
| 54 |
+
sentence_representation = output.last_hidden_state[:, 0, :]
|
| 55 |
+
elif self.pooling == "roberta-pooler":
|
| 56 |
+
sentence_representation = output.pooler_output # (batch_size, hidden_dim)
|
| 57 |
+
|
| 58 |
+
mean = self.out_proj_m(sentence_representation)
|
| 59 |
+
var = self.out_proj_v(sentence_representation)
|
| 60 |
+
var = torch.clamp(var, min=1e-8, max=1000) # following Seitzer-NeurIPS2022
|
| 61 |
+
|
| 62 |
+
return mean.squeeze(), var.squeeze(), sentence_representation, output.last_hidden_state
|
| 63 |
+
|
| 64 |
+
class LitPairedTextModel(L.LightningModule):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
plm_names: list[str],
|
| 68 |
+
lr: float,
|
| 69 |
+
log_dir: str,
|
| 70 |
+
save_uc_metrics: bool,
|
| 71 |
+
error_decay_factor: float,
|
| 72 |
+
approach: str,
|
| 73 |
+
sep_token_id: int, # required for alignment loss
|
| 74 |
+
lambdas: list[float] = [], # initlisaed to compatible with old saved checkpoints
|
| 75 |
+
num_passes: int = 4
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.save_hyperparameters()
|
| 79 |
+
|
| 80 |
+
self.approach = approach
|
| 81 |
+
if self.approach == "cross-basic":
|
| 82 |
+
self.model = CrossEncoderBasicModel(plm_name=plm_names[0])
|
| 83 |
+
elif self.approach == "cross-prob":
|
| 84 |
+
self.model = CrossEncoderProbModel(plm_name=plm_names[0])
|
| 85 |
+
else:
|
| 86 |
+
raise ValueError(f"Invalid approach: {self.approach}")
|
| 87 |
+
|
| 88 |
+
self.lr = lr
|
| 89 |
+
self.log_dir = log_dir
|
| 90 |
+
self.save_uc_metrics = save_uc_metrics
|
| 91 |
+
|
| 92 |
+
self.error_decay_factor = error_decay_factor
|
| 93 |
+
|
| 94 |
+
self.lambdas = lambdas
|
| 95 |
+
self.sep_token_id = sep_token_id
|
| 96 |
+
self.num_passes = num_passes
|
| 97 |
+
|
| 98 |
+
self.penalty_type = "exp-decay"
|
| 99 |
+
|
| 100 |
+
self.validation_outputs = []
|
| 101 |
+
self.test_outputs = []
|
| 102 |
+
|
| 103 |
+
def forward(self, batch: dict) -> tuple[Tensor, Tensor, Tensor]:
|
| 104 |
+
means, varss, hidden_states = [], [], []
|
| 105 |
+
|
| 106 |
+
for _ in range(self.num_passes):
|
| 107 |
+
if self.approach == "cross-prob":
|
| 108 |
+
mean, var, _, hidden_state = self.model(
|
| 109 |
+
input_ids=batch['input_ids'],
|
| 110 |
+
attention_mask=batch['attention_mask']
|
| 111 |
+
)
|
| 112 |
+
elif self.approach == "cross-basic":
|
| 113 |
+
mean, hidden_state = self.model(batch)
|
| 114 |
+
var = torch.zeros_like(mean)
|
| 115 |
+
|
| 116 |
+
means.append(mean)
|
| 117 |
+
varss.append(var)
|
| 118 |
+
hidden_states.append(hidden_state)
|
| 119 |
+
|
| 120 |
+
mean = torch.stack(means, dim=0).mean(dim=0)
|
| 121 |
+
var = torch.stack(varss, dim=0).mean(dim=0)
|
| 122 |
+
hidden_state = torch.stack(hidden_states, dim=0).mean(dim=0)
|
| 123 |
+
|
| 124 |
+
return mean, var, hidden_state
|
| 125 |
+
|
| 126 |
+
def _enable_dropout_at_inference(self):
|
| 127 |
+
for m in self.model.modules():
|
| 128 |
+
if isinstance(m, torch.nn.Dropout):
|
| 129 |
+
m.train()
|
| 130 |
+
|
| 131 |
+
|