from transformers import GPT2Tokenizer, GPT2LMHeadModel import torch import gradio as gr # Load the tokenizer and the model tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium") model = GPT2LMHeadModel.from_pretrained("gpt2-medium") # Function for generating text def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs.input_ids, max_length=100, num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Define a function that will be used in the Gradio interface def generate_from_prompt(prompt): return generate_text(prompt) # Create the Gradio interface gr.Interface(fn=generate_from_prompt, inputs="text", outputs="text", title="GPT-2 Medium Text Generator").launch()