Spaces:
Sleeping
Sleeping
File size: 19,279 Bytes
c43a81f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
#!/usr/bin/env python3
"""
2PAC: Picture Analyzer & Corruption Killer - Gradio Web Interface
Steganography, image corruption detection, and security analysis
"""
import os
import tempfile
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
import io
import base64
# Import 2PAC modules
from steg_embedder import StegEmbedder
import rat_finder
import find_bad_images
# Initialize embedder
embedder = StegEmbedder()
def hide_data_in_image(image, secret_text, password, bits_per_channel):
"""
Tab 1: Hide data in an image using LSB steganography
"""
if image is None:
return None, "β οΈ Please upload an image first"
if not secret_text or len(secret_text.strip()) == 0:
return None, "β οΈ Please enter text to hide"
try:
# Save uploaded image to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_input:
img = Image.fromarray(image)
img.save(tmp_input.name, 'PNG')
input_path = tmp_input.name
# Create output file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_output:
output_path = tmp_output.name
# Calculate capacity first
img = Image.open(input_path)
capacity = embedder.calculate_capacity(img, bits_per_channel)
# Check if data fits
data_size = len(secret_text.encode('utf-8'))
if data_size > capacity:
os.unlink(input_path)
return None, f"β **Error:** Data too large!\n\n" \
f"- **Data size:** {data_size:,} bytes\n" \
f"- **Maximum capacity:** {capacity:,} bytes\n" \
f"- **Overflow:** {data_size - capacity:,} bytes\n\n" \
f"π‘ Try: Shorter text, larger image, or more bits per channel"
# Embed data
pwd = password if password and len(password) > 0 else None
success, message, stats = embedder.embed_data(
input_path,
secret_text,
output_path,
password=pwd,
bits_per_channel=bits_per_channel
)
# Clean up input
os.unlink(input_path)
if not success:
if os.path.exists(output_path):
os.unlink(output_path)
return None, f"β **Error:** {message}"
# Load result image
result_img = Image.open(output_path)
# Format success message
result_message = f"""
β
**Successfully Hidden!**
π **Statistics:**
- **Data hidden:** {stats['data_size']:,} bytes ({len(secret_text):,} characters)
- **Image capacity:** {stats['capacity']:,} bytes
- **Utilization:** {stats['utilization']}
- **Encryption:** {"π Yes" if stats['encrypted'] else "π No"}
- **LSB depth:** {stats['bits_per_channel']} bit(s) per channel
- **Image dimensions:** {stats['image_size']}
πΎ **Download the image below** - your data is invisible to the naked eye!
β οΈ **Important:**
- Save as PNG (not JPEG - will destroy hidden data)
- Keep your password safe if you used encryption
"""
return result_img, result_message
except Exception as e:
if 'input_path' in locals() and os.path.exists(input_path):
os.unlink(input_path)
if 'output_path' in locals() and os.path.exists(output_path):
os.unlink(output_path)
return None, f"β **Error:** {str(e)}"
def detect_hidden_data(image, sensitivity):
"""
Tab 2: Detect steganography using RAT Finder analysis
"""
if image is None:
return None, "β οΈ Please upload an image to analyze"
try:
# Save uploaded image to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
img = Image.fromarray(image)
img.save(tmp.name, 'PNG')
image_path = tmp.name
# Map slider to sensitivity
sens_map = {1: 'low', 2: 'low', 3: 'low', 4: 'medium', 5: 'medium',
6: 'medium', 7: 'high', 8: 'high', 9: 'high', 10: 'high'}
sensitivity_str = sens_map.get(sensitivity, 'medium')
# Perform analysis
confidence, details = rat_finder.analyze_image(image_path, sensitivity=sensitivity_str)
# Generate ELA visualization
ela_result = rat_finder.perform_ela_analysis(image_path)
# Clean up
os.unlink(image_path)
# Create confidence indicator
if confidence >= 70:
confidence_emoji = "π¨"
confidence_label = "HIGH SUSPICION"
elif confidence >= 40:
confidence_emoji = "β οΈ"
confidence_label = "MODERATE SUSPICION"
else:
confidence_emoji = "β
"
confidence_label = "LOW SUSPICION"
# Format results
result_text = f"""
{confidence_emoji} **{confidence_label}**
π **Confidence Score:** {confidence:.1f}%
π **Analysis Details:**
"""
for detail in details:
result_text += f"\nβ’ {detail}"
result_text += f"""
---
**What does this mean?**
- **ELA (Error Level Analysis):** Highlights areas with different compression levels
- Bright areas = potential manipulation or hidden data
- Uniform appearance = likely unmodified
- **LSB Analysis:** Checks randomness in least significant bits
- **Histogram Analysis:** Looks for statistical anomalies
- **Metadata:** Examines EXIF data for suspicious tools
- **File Structure:** Checks for trailing data
π‘ **High confidence doesn't mean data is hidden** - just that anomalies exist.
Use the "Extract Data" tab if you suspect LSB steganography!
"""
# Return ELA plot if available
if ela_result['success'] and ela_result['ela_image']:
return ela_result['ela_image'], result_text
return None, result_text
except Exception as e:
if 'image_path' in locals() and os.path.exists(image_path):
os.unlink(image_path)
return None, f"β **Error:** {str(e)}"
def extract_hidden_data(image, password, bits_per_channel):
"""
Tab 2b: Extract data hidden with LSB steganography
"""
if image is None:
return "β οΈ Please upload an image"
try:
# Save uploaded image to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
img = Image.fromarray(image)
img.save(tmp.name, 'PNG')
image_path = tmp.name
# Attempt extraction
pwd = password if password and len(password) > 0 else None
success, message, extracted_data = embedder.extract_data(
image_path,
password=pwd,
bits_per_channel=bits_per_channel
)
# Clean up
os.unlink(image_path)
if not success:
return f"β **{message}**\n\nPossible reasons:\n" \
f"β’ No data hidden in this image\n" \
f"β’ Wrong password (if encrypted)\n" \
f"β’ Wrong bits-per-channel setting\n" \
f"β’ Image was modified/re-saved"
result = f"""
β
**Data Successfully Extracted!**
π **Hidden Message:**
---
{extracted_data}
---
π **Extraction Info:**
- **Data size:** {len(extracted_data)} characters
- **Decryption:** {"π Used" if pwd else "π Not needed"}
- **LSB depth:** {bits_per_channel} bit(s) per channel
π‘ Copy the message above - it has been successfully recovered from the image!
"""
return result
except Exception as e:
if 'image_path' in locals() and os.path.exists(image_path):
os.unlink(image_path)
return f"β **Error:** {str(e)}"
def check_image_corruption(image, sensitivity, check_visual):
"""
Tab 3: Check for image corruption and validate integrity
"""
if image is None:
return "β οΈ Please upload an image to check"
try:
# Save uploaded image to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
img = Image.fromarray(image)
img.save(tmp.name, 'PNG')
image_path = tmp.name
# Map slider to sensitivity
sens_map = {1: 'low', 2: 'low', 3: 'low', 4: 'medium', 5: 'medium',
6: 'medium', 7: 'high', 8: 'high', 9: 'high', 10: 'high'}
sensitivity_str = sens_map.get(sensitivity, 'medium')
# Validate image
is_valid = find_bad_images.is_valid_image(
image_path,
thorough=True,
sensitivity=sensitivity_str,
check_visual=check_visual
)
# Get diagnostic details
issues = find_bad_images.diagnose_image_issue(image_path)
# Clean up
os.unlink(image_path)
# Format results
if is_valid:
result = f"""
β
**IMAGE IS VALID**
The image passed all validation checks:
- β
File structure is intact
- β
Headers are valid
- β
No truncation detected
- β
Metadata is consistent
"""
if check_visual:
result += "- β
No visual corruption detected\n"
result += "\nπ **This image is safe to use!**"
else:
result = f"""
β οΈ **ISSUES DETECTED**
The image has validation problems:
"""
if issues:
for issue_type, issue_desc in issues.items():
result += f"**{issue_type}:**\n{issue_desc}\n\n"
else:
result += "β Image failed validation but no specific issues identified.\n\n"
result += """
---
**What to do:**
- Image may be corrupted or incomplete
- Try re-downloading the original file
- Check if the file was properly transferred
- Use image repair tools if needed
"""
return result
except Exception as e:
if 'image_path' in locals() and os.path.exists(image_path):
os.unlink(image_path)
return f"β **Error:** {str(e)}"
# Create Gradio interface
with gr.Blocks(
title="2PAC: Picture Analyzer & Corruption Killer",
theme=gr.themes.Soft(
primary_hue="violet",
secondary_hue="blue",
)
) as demo:
gr.Markdown("""
# π« 2PAC: Picture Analyzer & Corruption Killer
**Advanced image security and steganography toolkit**
Hide secret messages in images, detect hidden data, and validate image integrity.
""")
with gr.Tabs():
# TAB 1: Hide Data
with gr.Tab("π Hide Secret Data"):
gr.Markdown("""
## Hide Data in Image (LSB Steganography)
Invisibly hide text inside an image using Least Significant Bit encoding.
The image will look identical to the naked eye, but contains your secret message!
""")
with gr.Row():
with gr.Column(scale=1):
hide_input_image = gr.Image(
label="Upload Image",
type="numpy",
height=300
)
hide_secret_text = gr.Textbox(
label="Secret Text to Hide",
placeholder="Enter your secret message here...",
lines=5,
max_lines=10
)
with gr.Row():
hide_password = gr.Textbox(
label="Password (Optional - for encryption)",
placeholder="Leave empty for no encryption",
type="password"
)
hide_bits = gr.Slider(
minimum=1,
maximum=4,
value=1,
step=1,
label="LSB Depth (higher = more capacity, less subtle)",
info="1=subtle, 4=maximum capacity"
)
hide_button = gr.Button("π Hide Data in Image", variant="primary", size="lg")
with gr.Column(scale=1):
hide_output_image = gr.Image(label="Result Image (Download This!)", height=300)
hide_output_text = gr.Markdown(label="Status")
hide_button.click(
fn=hide_data_in_image,
inputs=[hide_input_image, hide_secret_text, hide_password, hide_bits],
outputs=[hide_output_image, hide_output_text]
)
gr.Markdown("""
---
**π‘ Tips:**
- Use PNG images for best results (JPEG will destroy hidden data!)
- Larger images can hold more data
- Password encryption adds extra security layer
- LSB depth: 1-2 bits is undetectable, 3-4 bits provides more capacity
""")
# TAB 2: Detect & Extract
with gr.Tab("π Detect & Extract Hidden Data"):
gr.Markdown("""
## Detect Steganography & Extract Hidden Data
Use advanced analysis techniques to detect hidden data in images, or extract data hidden with this tool.
""")
with gr.Tabs():
# Sub-tab: Detection
with gr.Tab("π Detect (Analysis)"):
gr.Markdown("""
### Steganography Detection (RAT Finder)
Analyzes images for signs of hidden data using multiple techniques:
ELA, LSB analysis, histogram analysis, metadata inspection, and more.
""")
with gr.Row():
with gr.Column(scale=1):
detect_input_image = gr.Image(
label="Upload Image to Analyze",
type="numpy",
height=300
)
detect_sensitivity = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Detection Sensitivity",
info="Higher = more thorough but more false positives"
)
detect_button = gr.Button("π Analyze for Hidden Data", variant="primary", size="lg")
with gr.Column(scale=1):
detect_output_image = gr.Image(label="ELA Visualization", height=300)
detect_output_text = gr.Markdown(label="Analysis Results")
detect_button.click(
fn=detect_hidden_data,
inputs=[detect_input_image, detect_sensitivity],
outputs=[detect_output_image, detect_output_text]
)
# Sub-tab: Extraction
with gr.Tab("π€ Extract Data"):
gr.Markdown("""
### Extract Hidden Data (LSB Extraction)
If you have an image created with the "Hide Data" tool, extract the hidden message here.
""")
with gr.Row():
with gr.Column(scale=1):
extract_input_image = gr.Image(
label="Upload Image with Hidden Data",
type="numpy",
height=300
)
with gr.Row():
extract_password = gr.Textbox(
label="Password (if encrypted)",
placeholder="Leave empty if not encrypted",
type="password"
)
extract_bits = gr.Slider(
minimum=1,
maximum=4,
value=1,
step=1,
label="LSB Depth (must match encoding)",
info="Use same value as when hiding"
)
extract_button = gr.Button("π€ Extract Hidden Data", variant="primary", size="lg")
with gr.Column(scale=1):
extract_output_text = gr.Markdown(label="Extracted Data")
extract_button.click(
fn=extract_hidden_data,
inputs=[extract_input_image, extract_password, extract_bits],
outputs=[extract_output_text]
)
# TAB 3: Check Corruption
with gr.Tab("π‘οΈ Check Image Integrity"):
gr.Markdown("""
## Image Corruption & Validation
Thoroughly validate image files for corruption, truncation, and structural issues.
Detects damaged headers, incomplete data, and visual artifacts.
""")
with gr.Row():
with gr.Column(scale=1):
check_input_image = gr.Image(
label="Upload Image to Validate",
type="numpy",
height=300
)
with gr.Row():
check_sensitivity = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Validation Sensitivity",
info="Higher = more strict validation"
)
check_visual = gr.Checkbox(
label="Check for Visual Corruption",
value=True,
info="Slower but detects visual artifacts"
)
check_button = gr.Button("π‘οΈ Validate Image", variant="primary", size="lg")
with gr.Column(scale=1):
check_output_text = gr.Markdown(label="Validation Results")
check_button.click(
fn=check_image_corruption,
inputs=[check_input_image, check_sensitivity, check_visual],
outputs=[check_output_text]
)
gr.Markdown("""
---
**π Checks Performed:**
- β
File format validation (JPEG, PNG, GIF, etc.)
- β
Header integrity
- β
Data completeness
- β
Metadata consistency
- β
Visual corruption detection (black/gray regions)
- β
Structure validation
""")
gr.Markdown("""
---
## About 2PAC
**2PAC** (Picture Analyzer & Corruption Killer) is a comprehensive image security toolkit combining:
- **LSB Steganography**: Hide and extract secret messages in images
- **RAT Finder**: Advanced steganography detection using 7+ analysis techniques
- **Image Validation**: Detect corruption and structural issues
π **GitHub:** [github.com/ricyoung/2pac](https://github.com/ricyoung/2pac)
π **More Tools:** [demo.deepneuro.ai](https://demo.deepneuro.ai)
---
*Built with β€οΈ by DeepNeuro.AI | Powered by Gradio & Hugging Face Spaces*
""")
if __name__ == "__main__":
demo.launch()
|