Spaces:
Configuration error
Configuration error
| import os | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from langchain.callbacks.base import BaseCallbackHandler | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.memory.chat_message_histories import StreamlitChatMessageHistory | |
| from langchain.vectorstores import Chroma | |
| load_dotenv() | |
| website_url = os.environ.get('WEBSITE_URL', 'a website') | |
| st.set_page_config(page_title=f'Chat with {website_url}') | |
| st.title('Chat with a website') | |
| def get_retriever(): | |
| embeddings = OpenAIEmbeddings() | |
| vectordb = Chroma(persist_directory='db', embedding_function=embeddings) | |
| retriever = vectordb.as_retriever(search_type='mmr') | |
| return retriever | |
| class StreamHandler(BaseCallbackHandler): | |
| def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''): | |
| self.container = container | |
| self.text = initial_text | |
| def on_llm_new_token(self, token: str, **kwargs) -> None: | |
| self.text += token | |
| self.container.markdown(self.text) | |
| retriever = get_retriever() | |
| msgs = StreamlitChatMessageHistory() | |
| memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True) | |
| llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True) | |
| qa_chain = ConversationalRetrievalChain.from_llm( | |
| llm, retriever=retriever, memory=memory, verbose=False | |
| ) | |
| if st.sidebar.button('Clear message history') or len(msgs.messages) == 0: | |
| msgs.clear() | |
| msgs.add_ai_message(f'Ask me anything about {website_url}!') | |
| avatars = {'human': 'user', 'ai': 'assistant'} | |
| for msg in msgs.messages: | |
| st.chat_message(avatars[msg.type]).write(msg.content) | |
| if user_query := st.chat_input(placeholder='Ask me anything!'): | |
| st.chat_message('user').write(user_query) | |
| with st.chat_message('assistant'): | |
| stream_handler = StreamHandler(st.empty()) | |
| response = qa_chain.run(user_query, callbacks=[stream_handler]) | |