antfraia commited on
Commit
9abb26a
·
1 Parent(s): a8218fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -46
app.py CHANGED
@@ -1,47 +1,49 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer
2
  import gradio as gr
3
- import torch
4
-
5
-
6
- title = "🤖AI ChatBot"
7
- description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
8
- examples = [["How are you?"]]
9
-
10
-
11
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
12
- model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
13
-
14
-
15
- def predict(input, history=[]):
16
- # tokenize the new input sentence
17
- new_user_input_ids = tokenizer.encode(
18
- input + tokenizer.eos_token, return_tensors="pt"
19
- )
20
-
21
- # append the new user input tokens to the chat history
22
- bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
23
-
24
- # generate a response
25
- history = model.generate(
26
- bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
27
- ).tolist()
28
-
29
- # convert the tokens to text, and then split the responses into lines
30
- response = tokenizer.decode(history[0]).split("<|endoftext|>")
31
- # print('decoded_response-->>'+str(response))
32
- response = [
33
- (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
34
- ] # convert to tuples of list
35
- # print('response-->>'+str(response))
36
- return response, history
37
-
38
-
39
- gr.Interface(
40
- fn=predict,
41
- title=title,
42
- description=description,
43
- examples=examples,
44
- inputs=["text", "state"],
45
- outputs=["chatbot", "state"],
46
- theme="finlaymacklon/boxy_violet",
47
- ).launch()
 
 
 
 
 
1
  import gradio as gr
2
+ import requests
3
+
4
+ API_KEY = "91b23cab82ee530b2052c8757e343b0d"
5
+ BASE_URL = "http://api.openweathermap.org/data/2.5/weather"
6
+
7
+ def get_weather(city_name):
8
+ """Fetch weather information for a city using OpenWeatherMap API."""
9
+ params = {
10
+ 'q': city_name,
11
+ 'appid': API_KEY,
12
+ 'units': 'metric' # This will return temperature in Celsius
13
+ }
14
+ response = requests.get(BASE_URL, params=params)
15
+ data = response.json()
16
+
17
+ if data['cod'] == 200:
18
+ return {
19
+ 'City': city_name,
20
+ 'Temperature': data['main']['temp'],
21
+ 'Weather': data['weather'][0]['description'],
22
+ 'Humidity': data['main']['humidity'],
23
+ 'Wind Speed': data['wind']['speed']
24
+ }
25
+ else:
26
+ return {
27
+ 'City': city_name,
28
+ 'Error': data['message']
29
+ }
30
+
31
+ def compare_weather(city1, city2):
32
+ """Compare weather of two cities."""
33
+ weather1 = get_weather(city1)
34
+ weather2 = get_weather(city2)
35
+
36
+ return weather1, weather2
37
+
38
+ # Gradio Interface
39
+ iface = gr.Interface(
40
+ fn=compare_weather,
41
+ inputs=[gr.inputs.Textbox(placeholder="Enter first city..."),
42
+ gr.inputs.Textbox(placeholder="Enter second city...")],
43
+ outputs=[gr.outputs.JSON(label="City 1 Weather"),
44
+ gr.outputs.JSON(label="City 2 Weather")],
45
+ live=True
46
+ )
47
+
48
+ if __name__ == "__main__":
49
+ iface.launch()