Update app.py
Browse files
app.py
CHANGED
|
@@ -1,37 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import requests
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
| 6 |
-
HEADERS = {"Authorization": "Bearer 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"}
|
| 7 |
|
| 8 |
-
def transcribe_audio(
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
audio_data = f.read()
|
| 12 |
-
|
| 13 |
-
# Make API request to OpenAI Whisper v2 API
|
| 14 |
-
try:
|
| 15 |
-
response = requests.post(API_URL, headers=HEADERS, data=audio_data)
|
| 16 |
-
response.raise_for_status() # Raises an HTTPError if the HTTP request returned an unsuccessful status code
|
| 17 |
-
except requests.RequestException as error:
|
| 18 |
-
print(f"API request failed: {error}")
|
| 19 |
-
return "Failed to transcribe. Please try again."
|
| 20 |
-
|
| 21 |
-
result = response.json()
|
| 22 |
-
|
| 23 |
-
# Print the full JSON response for troubleshooting
|
| 24 |
-
print(result)
|
| 25 |
-
|
| 26 |
-
# Extract the transcribed text from the response
|
| 27 |
-
# TODO: Replace 'your-key-here' with the actual key used by the API's response
|
| 28 |
-
transcribed_text = result.get("your-key-here", "Failed to retrieve transcription.")
|
| 29 |
-
|
| 30 |
-
return transcribed_text
|
| 31 |
|
| 32 |
audio_input = gr.inputs.Audio(type="filepath")
|
| 33 |
text_output = gr.outputs.Textbox()
|
| 34 |
|
|
|
|
| 35 |
iface = gr.Interface(
|
| 36 |
fn=transcribe_audio,
|
| 37 |
inputs=audio_input,
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
+
# Load the model without launching the interface
|
| 4 |
+
loaded_model = gr.Interface.load("models/openai/whisper-large-v2", allow_launch=False)
|
|
|
|
| 5 |
|
| 6 |
+
def transcribe_audio(audio_file):
|
| 7 |
+
# Use the loaded model to transcribe the audio
|
| 8 |
+
return loaded_model(audio_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
audio_input = gr.inputs.Audio(type="filepath")
|
| 11 |
text_output = gr.outputs.Textbox()
|
| 12 |
|
| 13 |
+
# Setup the custom Gradio interface with your configurations
|
| 14 |
iface = gr.Interface(
|
| 15 |
fn=transcribe_audio,
|
| 16 |
inputs=audio_input,
|