Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import torch | |
| import gradio as gr | |
| from e4e.models.psp import pSp | |
| from util import * | |
| from huggingface_hub import hf_hub_download | |
| import tempfile | |
| from argparse import Namespace | |
| import shutil | |
| import dlib | |
| import numpy as np | |
| import torchvision.transforms as transforms | |
| from torchvision import utils | |
| from model.sg2_model import Generator | |
| from generate_videos import generate_frames, video_from_interpolations, project_code_by_edit_name | |
| from styleclip.styleclip_global import project_code_with_styleclip, style_tensor_to_style_dict | |
| import clip | |
| model_dir = "models" | |
| os.makedirs(model_dir, exist_ok=True) | |
| model_repos = {"e4e": ("akhaliq/JoJoGAN_e4e_ffhq_encode", "e4e_ffhq_encode.pt"), | |
| "dlib": ("akhaliq/jojogan_dlib", "shape_predictor_68_face_landmarks.dat"), | |
| "sc_fs3": ("rinong/stylegan-nada-models", "fs3.npy"), | |
| "base": ("akhaliq/jojogan-stylegan2-ffhq-config-f", "stylegan2-ffhq-config-f.pt"), | |
| "anime": ("rinong/stylegan-nada-models", "anime.pt"), | |
| "joker": ("rinong/stylegan-nada-models", "joker.pt"), | |
| # "simpson": ("rinong/stylegan-nada-models", "simpson.pt"), | |
| # "ssj": ("rinong/stylegan-nada-models", "ssj.pt"), | |
| # "white_walker": ("rinong/stylegan-nada-models", "white_walker.pt"), | |
| # "zuckerberg": ("rinong/stylegan-nada-models", "zuckerberg.pt"), | |
| # "cubism": ("rinong/stylegan-nada-models", "cubism.pt"), | |
| # "disney_princess": ("rinong/stylegan-nada-models", "disney_princess.pt"), | |
| # "edvard_munch": ("rinong/stylegan-nada-models", "edvard_munch.pt"), | |
| # "van_gogh": ("rinong/stylegan-nada-models", "van_gogh.pt"), | |
| # "oil": ("rinong/stylegan-nada-models", "oil.pt"), | |
| # "rick_morty": ("rinong/stylegan-nada-models", "rick_morty.pt"), | |
| # "botero": ("rinong/stylegan-nada-models", "botero.pt"), | |
| # "crochet": ("rinong/stylegan-nada-models", "crochet.pt"), | |
| # "modigliani": ("rinong/stylegan-nada-models", "modigliani.pt"), | |
| # "shrek": ("rinong/stylegan-nada-models", "shrek.pt"), | |
| # "sketch": ("rinong/stylegan-nada-models", "sketch.pt"), | |
| # "thanos": ("rinong/stylegan-nada-models", "thanos.pt"), | |
| } | |
| def get_models(): | |
| os.makedirs(model_dir, exist_ok=True) | |
| model_paths = {} | |
| for model_name, repo_details in model_repos.items(): | |
| download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1]) | |
| model_paths[model_name] = download_path | |
| return model_paths | |
| model_paths = get_models() | |
| class ImageEditor(object): | |
| def __init__(self): | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| latent_size = 512 | |
| n_mlp = 8 | |
| channel_mult = 2 | |
| model_size = 1024 | |
| self.generators = {} | |
| self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib", "sc_fs3"]] | |
| for model in self.model_list: | |
| g_ema = Generator( | |
| model_size, latent_size, n_mlp, channel_multiplier=channel_mult | |
| ).to(self.device) | |
| checkpoint = torch.load(model_paths[model], map_location=self.device) | |
| g_ema.load_state_dict(checkpoint['g_ema']) | |
| self.generators[model] = g_ema | |
| self.experiment_args = {"model_path": model_paths["e4e"]} | |
| self.experiment_args["transform"] = transforms.Compose( | |
| [ | |
| transforms.Resize((256, 256)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| ] | |
| ) | |
| self.resize_dims = (256, 256) | |
| model_path = self.experiment_args["model_path"] | |
| ckpt = torch.load(model_path, map_location="cpu") | |
| opts = ckpt["opts"] | |
| opts["checkpoint_path"] = model_path | |
| opts = Namespace(**opts) | |
| self.e4e_net = pSp(opts, self.device) | |
| self.e4e_net.eval() | |
| self.shape_predictor = dlib.shape_predictor( | |
| model_paths["dlib"] | |
| ) | |
| self.styleclip_fs3 = torch.from_numpy(np.load(model_paths["sc_fs3"])).to(self.device) | |
| self.clip_model, _ = clip.load("ViT-B/32", device=self.device) | |
| print("setup complete") | |
| def get_style_list(self): | |
| style_list = [] | |
| for key in self.generators: | |
| style_list.append(key) | |
| return style_list | |
| def invert_image(self, input_image): | |
| input_image = self.run_alignment(str(input_image)) | |
| input_image = input_image.resize(self.resize_dims) | |
| img_transforms = self.experiment_args["transform"] | |
| transformed_image = img_transforms(input_image) | |
| with torch.no_grad(): | |
| images, latents = self.run_on_batch(transformed_image.unsqueeze(0)) | |
| result_image, latent = images[0], latents[0] | |
| inverted_latent = latent.unsqueeze(0).unsqueeze(1) | |
| return inverted_latent | |
| def get_generators_for_styles(self, output_styles, loop_styles=False): | |
| if "base" in output_styles: # always start with base if chosen | |
| output_styles.insert(0, output_styles.pop(output_styles.index("base"))) | |
| if loop_styles: | |
| output_styles.append(output_styles[0]) | |
| return [self.generators[style] for style in output_styles] | |
| def _pack_edits(func): | |
| def inner(self, | |
| edit_type_choice, | |
| pose_slider, | |
| smile_slider, | |
| gender_slider, | |
| age_slider, | |
| hair_slider, | |
| src_text_styleclip, | |
| tar_text_styleclip, | |
| alpha_styleclip, | |
| beta_styleclip, | |
| *args): | |
| edit_choices = {"edit_type": edit_type_choice, | |
| "pose": pose_slider, | |
| "smile": smile_slider, | |
| "gender": gender_slider, | |
| "age": age_slider, | |
| "hair_length": hair_slider, | |
| "src_text": src_text_styleclip, | |
| "tar_text": tar_text_styleclip, | |
| "alpha": alpha_styleclip, | |
| "beta": beta_styleclip} | |
| return func(self, *args, edit_choices) | |
| return inner | |
| def get_target_latents(self, source_latent, edit_choices, generators): | |
| np_source_latent = source_latent.squeeze(0).cpu().detach().numpy() | |
| target_latents = [] | |
| if edit_choices["edit_type"] == "InterFaceGAN": | |
| for attribute_name in ["pose", "smile", "gender", "age", "hair_length"]: | |
| strength = edit_choices[attribute_name] | |
| if strength != 0.0: | |
| target_latents.append(project_code_by_edit_name(np_source_latent, attribute_name, strength)) | |
| elif edit_choices["edit_type"] == "StyleCLIP": | |
| source_s_dict = generators[0].get_s_code(source_latent, input_is_latent=True) | |
| target_latents.append(project_code_with_styleclip(source_s_dict, | |
| edit_choices["src_text"], | |
| edit_choices["tar_text"], | |
| edit_choices["alpha"], | |
| edit_choices["beta"], | |
| generators[0], | |
| self.styleclip_fs3, | |
| self.clip_model)) | |
| # if edit type is none or if all slides were set to 0 | |
| if not target_latents: | |
| target_latents = [np_source_latent, ] * max((len(generators) - 1), 1) | |
| return target_latents | |
| def edit_image(self, input, output_styles, edit_choices): | |
| return self.predict(input, output_styles, edit_choices=edit_choices) | |
| def edit_video(self, input, output_styles, loop_styles, edit_choices): | |
| return self.predict(input, output_styles, generate_video=True, loop_styles=loop_styles, edit_choices=edit_choices) | |
| def predict( | |
| self, | |
| input, # Input image path | |
| output_styles, # Style checkbox options. | |
| generate_video = False, # Generate a video instead of an output image | |
| loop_styles = False, # Loop back to the initial style | |
| edit_choices = None, # Optional dictionary with edit choice arguments | |
| ): | |
| if edit_choices is None: | |
| edit_choices = {"edit_type": "None"} | |
| # @title Align image | |
| out_dir = tempfile.mkdtemp() | |
| inverted_latent = self.invert_image(input) | |
| generators = self.get_generators_for_styles(output_styles, loop_styles) | |
| target_latents = self.get_target_latents(inverted_latent, edit_choices, generators) | |
| if not generate_video: | |
| output_paths = [] | |
| with torch.no_grad(): | |
| for g_ema in generators: | |
| latent_for_gen = random.choice(target_latents) | |
| if edit_choices["edit_type"] == "StyleCLIP": | |
| latent_for_gen = style_tensor_to_style_dict(latent_for_gen, g_ema) | |
| img, _ = g_ema(latent_for_gen, input_is_s_code=True, input_is_latent=True, truncation=1, randomize_noise=False) | |
| else: | |
| latent_for_gen = [torch.from_numpy(latent_for_gen).float().to(self.device)] | |
| img, _ = g_ema(latent_for_gen, input_is_latent=True, truncation=1, randomize_noise=False) | |
| output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg") | |
| utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1)) | |
| output_paths.append(output_path) | |
| return output_paths | |
| return self.generate_vid(generators, inverted_latent, target_latents, out_dir) | |
| def generate_vid(self, generators, source_latent, target_latents, out_dir): | |
| fps = 24 | |
| np_latent = source_latent.squeeze(0).cpu().detach().numpy() | |
| with tempfile.TemporaryDirectory() as dirpath: | |
| generate_frames(np_latent, target_latents, generators, dirpath) | |
| video_from_interpolations(fps, dirpath) | |
| gen_path = os.path.join(dirpath, "out.mp4") | |
| out_path = os.path.join(out_dir, "out.mp4") | |
| shutil.copy2(gen_path, out_path) | |
| return out_path | |
| def run_alignment(self, image_path): | |
| aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor) | |
| print("Aligned image has shape: {}".format(aligned_image.size)) | |
| return aligned_image | |
| def run_on_batch(self, inputs): | |
| images, latents = self.e4e_net( | |
| inputs.to(self.device).float(), randomize_noise=False, return_latents=True | |
| ) | |
| return images, latents | |
| editor = ImageEditor() | |
| # def change_component_visibility(component_types, invert_choices): | |
| # def visibility_impl(visible): | |
| # return [component_types[idx].update(visible=visible ^ invert_choices[idx]) for idx in range(len(component_types))] | |
| # return visibility_impl | |
| # def group_visibility(visible): | |
| # print("visible: ", visible) | |
| # return gr.Group.update(visibile=visible) | |
| blocks = gr.Blocks() | |
| with blocks: | |
| gr.Markdown("<h1><center>StyleGAN-NADA</center></h1>") | |
| gr.Markdown( | |
| "Demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022)." | |
| ) | |
| gr.Markdown( | |
| "For more information about the paper and code for training your own models (with examples OR text), see below." | |
| ) | |
| gr.Markdown("<h4 style='font-size: 110%;margin-top:.5em'>On biases</h4><div>This model relies on StyleGAN and CLIP, both of which are prone to biases such as poor representation of minorities or reinforcement of societal biases, such as gender norms. </div>") | |
| with gr.Row(): | |
| input_img = gr.inputs.Image(type="filepath", label="Input image") | |
| with gr.Column(): | |
| style_choice = gr.inputs.CheckboxGroup(choices=editor.get_style_list(), type="value", label="Choose your styles!") | |
| editing_type_choice = gr.Radio(choices=["None", "InterFaceGAN", "StyleCLIP"], label="Choose latent space editing option. For InterFaceGAN and StyleCLIP, set the options below:") | |
| with gr.Tabs(): | |
| with gr.TabItem("InterFaceGAN Editing Options"): | |
| gr.Markdown("Move the sliders to make the chosen attribute stronger (e.g. the person older) or leave at 0 to disable editing.") | |
| gr.Markdown("If multiple options are provided, they will be used randomly between images (or sequentially for a video), <u>not</u> together.") | |
| gr.Markdown("Please note that some directions may be entangled. For example, hair length adjustments are likely to also modify the perceived gender.") | |
| pose_slider = gr.Slider(label="Pose", minimum=-1, maximum=1, value=0, step=0.05) | |
| smile_slider = gr.Slider(label="Smile", minimum=-1, maximum=1, value=0, step=0.05) | |
| gender_slider = gr.Slider(label="Perceived Gender", minimum=-1, maximum=1, value=0, step=0.05) | |
| age_slider = gr.Slider(label="Age", minimum=-1, maximum=1, value=0, step=0.05) | |
| hair_slider = gr.Slider(label="Hair Length", minimum=-1, maximum=1, value=0, step=0.05) | |
| ig_edit_choices = [pose_slider, smile_slider, gender_slider, age_slider, hair_slider] | |
| with gr.TabItem("StyleCLIP Editing Options"): | |
| gr.Markdown("Move the sliders to make the chosen attribute stronger (e.g. the person older) or leave at 0 to disable editing.") | |
| gr.Markdown("If multiple options are provided, they will be used randomly between images (or sequentially for a video), <u>not</u> together") | |
| src_text_styleclip = gr.Textbox(label="Source text") | |
| tar_text_styleclip = gr.Textbox(label="Target text") | |
| alpha_styleclip = gr.Slider(label="Edit strength", minimum=-10, maximum=10, value=0, step=0.1) | |
| beta_styleclip = gr.Slider(label="Disentanglement Threshold", minimum=0.08, maximum=0.3, value=0.14, step=0.01) | |
| sc_edit_choices = [src_text_styleclip, tar_text_styleclip, alpha_styleclip, beta_styleclip] | |
| with gr.Tabs(): | |
| with gr.TabItem("Edit Images"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| img_button = gr.Button("Edit Image") | |
| with gr.Column(): | |
| img_output = gr.Gallery(label="Output Images") | |
| with gr.TabItem("Create Video"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| vid_button = gr.Button("Generate Video") | |
| loop_styles = gr.inputs.Checkbox(default=True, label="Loop video back to the initial style?") | |
| with gr.Row(): | |
| gr.Markdown("Warning: Videos generation requires the synthesis of hundreds of frames and is expected to take several minutes.") | |
| gr.Markdown("To reduce queue times, we significantly reduced the number of video frames. Using more than 3 styles will further reduce the frames per style, leading to quicker transitions. For better control, we reccomend cloning the gradio app, adjusting `num_alphas` in `generate_videos`, and running the code locally.") | |
| with gr.Column(): | |
| vid_output = gr.outputs.Video(label="Output Video") | |
| edit_inputs = [editing_type_choice] + ig_edit_choices + sc_edit_choices | |
| img_button.click(fn=editor.edit_image, inputs=edit_inputs + [input_img, style_choice], outputs=img_output) | |
| vid_button.click(fn=editor.edit_video, inputs=edit_inputs + [input_img, style_choice, loop_styles], outputs=vid_output) | |
| article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>" | |
| gr.Markdown(article) | |
| blocks.launch(enable_queue=True) |