Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import os
|
|
| 3 |
import tensorflow as tf
|
| 4 |
import numpy as np
|
| 5 |
import requests
|
|
|
|
| 6 |
|
| 7 |
from langchain_groq import ChatGroq
|
| 8 |
from langchain.agents import initialize_agent
|
|
@@ -35,23 +36,21 @@ def classify_image_and_stats(image_input):
|
|
| 35 |
img_norm = img / 255.0
|
| 36 |
img_batch = np.expand_dims(img_norm, axis=0)
|
| 37 |
|
| 38 |
-
prediction = model.predict(img_batch)[0]
|
| 39 |
mask = (prediction > 0.5).astype(np.uint8)
|
| 40 |
|
| 41 |
if mask.ndim == 3 and mask.shape[-1] == 1:
|
| 42 |
mask = np.squeeze(mask, axis=-1)
|
| 43 |
|
| 44 |
-
# Tumor stats
|
| 45 |
tumor_area = np.sum(mask)
|
| 46 |
total_area = IMG_HEIGHT * IMG_WIDTH
|
| 47 |
tumor_ratio = tumor_area / total_area
|
| 48 |
|
| 49 |
-
tumor_label = "Tumor Detected" if tumor_ratio > 0.
|
| 50 |
|
| 51 |
-
|
| 52 |
-
overlay = np.array(img) # original resized input
|
| 53 |
red_mask = np.zeros_like(overlay)
|
| 54 |
-
red_mask[..., 0] = mask * 255
|
| 55 |
|
| 56 |
overlay_img = np.clip(0.6 * overlay + 0.4 * red_mask, 0, 255).astype(np.uint8)
|
| 57 |
|
|
@@ -65,7 +64,7 @@ def classify_image_and_stats(image_input):
|
|
| 65 |
return overlay_img, stats
|
| 66 |
|
| 67 |
|
| 68 |
-
# === Gradio handler ===
|
| 69 |
def rishigpt_handler(image_input, groq_api_key):
|
| 70 |
os.environ["GROQ_API_KEY"] = groq_api_key
|
| 71 |
|
|
@@ -99,22 +98,24 @@ def rishigpt_handler(image_input, groq_api_key):
|
|
| 99 |
user_query = "Give me the segmentation details"
|
| 100 |
classification = agent.run(user_query)
|
| 101 |
|
| 102 |
-
# Better prompt + output parser
|
| 103 |
prompt = PromptTemplate(
|
| 104 |
input_variables=["result"],
|
| 105 |
template=(
|
| 106 |
"You are a compassionate AI radiologist. "
|
| 107 |
"Read this tumor analysis result: {result}. "
|
| 108 |
-
"Summarize the situation
|
| 109 |
-
"Add any recommendations for next steps too, but keep it easy to understand."
|
| 110 |
)
|
| 111 |
)
|
| 112 |
|
| 113 |
chain = prompt | llm
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
return overlay_img, description
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# === Gradio UI ===
|
| 120 |
inputs = [
|
|
@@ -124,7 +125,7 @@ inputs = [
|
|
| 124 |
|
| 125 |
outputs = [
|
| 126 |
gr.Image(type="numpy", label="Overlay: Brain MRI + Tumor Mask"),
|
| 127 |
-
gr.Textbox(label="Doctor's Explanation")
|
| 128 |
]
|
| 129 |
|
| 130 |
if __name__ == "__main__":
|
|
@@ -132,6 +133,6 @@ if __name__ == "__main__":
|
|
| 132 |
fn=rishigpt_handler,
|
| 133 |
inputs=inputs,
|
| 134 |
outputs=outputs,
|
| 135 |
-
title="
|
| 136 |
-
description="UNet++ Brain Tumor Segmentation with mask overlay, detailed stats, and human-like explanation."
|
| 137 |
).launch()
|
|
|
|
| 3 |
import tensorflow as tf
|
| 4 |
import numpy as np
|
| 5 |
import requests
|
| 6 |
+
import time
|
| 7 |
|
| 8 |
from langchain_groq import ChatGroq
|
| 9 |
from langchain.agents import initialize_agent
|
|
|
|
| 36 |
img_norm = img / 255.0
|
| 37 |
img_batch = np.expand_dims(img_norm, axis=0)
|
| 38 |
|
| 39 |
+
prediction = model.predict(img_batch)[0]
|
| 40 |
mask = (prediction > 0.5).astype(np.uint8)
|
| 41 |
|
| 42 |
if mask.ndim == 3 and mask.shape[-1] == 1:
|
| 43 |
mask = np.squeeze(mask, axis=-1)
|
| 44 |
|
|
|
|
| 45 |
tumor_area = np.sum(mask)
|
| 46 |
total_area = IMG_HEIGHT * IMG_WIDTH
|
| 47 |
tumor_ratio = tumor_area / total_area
|
| 48 |
|
| 49 |
+
tumor_label = "Tumor Detected" if tumor_ratio > 0.0025 else "No Tumor Detected"
|
| 50 |
|
| 51 |
+
overlay = np.array(img)
|
|
|
|
| 52 |
red_mask = np.zeros_like(overlay)
|
| 53 |
+
red_mask[..., 0] = mask * 255
|
| 54 |
|
| 55 |
overlay_img = np.clip(0.6 * overlay + 0.4 * red_mask, 0, 255).astype(np.uint8)
|
| 56 |
|
|
|
|
| 64 |
return overlay_img, stats
|
| 65 |
|
| 66 |
|
| 67 |
+
# === Gradio handler with typing effect ===
|
| 68 |
def rishigpt_handler(image_input, groq_api_key):
|
| 69 |
os.environ["GROQ_API_KEY"] = groq_api_key
|
| 70 |
|
|
|
|
| 98 |
user_query = "Give me the segmentation details"
|
| 99 |
classification = agent.run(user_query)
|
| 100 |
|
|
|
|
| 101 |
prompt = PromptTemplate(
|
| 102 |
input_variables=["result"],
|
| 103 |
template=(
|
| 104 |
"You are a compassionate AI radiologist. "
|
| 105 |
"Read this tumor analysis result: {result}. "
|
| 106 |
+
"Summarize the situation for the patient in natural paragraphs, calm, clear tone, with next steps."
|
|
|
|
| 107 |
)
|
| 108 |
)
|
| 109 |
|
| 110 |
chain = prompt | llm
|
| 111 |
+
final_text = chain.invoke({"result": classification}).content.strip()
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
# === Yield mask and typing chunks ===
|
| 114 |
+
displayed_text = ""
|
| 115 |
+
for char in final_text:
|
| 116 |
+
displayed_text += char
|
| 117 |
+
time.sleep(0.015)
|
| 118 |
+
yield overlay_img, displayed_text
|
| 119 |
|
| 120 |
# === Gradio UI ===
|
| 121 |
inputs = [
|
|
|
|
| 125 |
|
| 126 |
outputs = [
|
| 127 |
gr.Image(type="numpy", label="Overlay: Brain MRI + Tumor Mask"),
|
| 128 |
+
gr.Textbox(label="Doctor's Explanation (Typing...)")
|
| 129 |
]
|
| 130 |
|
| 131 |
if __name__ == "__main__":
|
|
|
|
| 133 |
fn=rishigpt_handler,
|
| 134 |
inputs=inputs,
|
| 135 |
outputs=outputs,
|
| 136 |
+
title="RishiGPT Medical Brain Segmentation",
|
| 137 |
+
description="UNet++ Brain Tumor Segmentation with live mask overlay, detailed stats, and human-like typing explanation."
|
| 138 |
).launch()
|