Spaces:
Sleeping
Sleeping
File size: 7,848 Bytes
f33adc1 537de10 f6433d8 527bfa3 3a2e9e6 527bfa3 f6433d8 199e5b0 527bfa3 ace9bdd 527bfa3 ace9bdd 527bfa3 f6433d8 ace9bdd 527bfa3 f6433d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
from langchain.schema import AIMessage, HumanMessage
import os
hftoken = os.environ["hftoken"]
from langchain_huggingface import HuggingFaceEndpoint
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
# prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# chain = prompt | llm | StrOutputParser()
# from langchain.document_loaders.csv_loader import CSVLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
model = "BAAI/bge-m3"
embeddings = HuggingFaceEndpointEmbeddings(model = model)
# Define the chat response function
def chatresponse(message, history):
# history_langchain_format = []
# for human, ai in history:
# history_langchain_format.append(HumanMessage(content=human))
# history_langchain_format.append(AIMessage(content=ai))
# history_langchain_format.append(HumanMessage(content=message))
data_vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
history_vectorstore = Chroma.from_documents(documents = history, embedding = embeddings)
vectorstore = data_vectorstore + history_vectorstore
retriever = vectorstore.as_retriever()
# from langchain.prompts import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
CONTEXT: {context}
HISTORY: {history}
QUESTION: {question}""")
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
output = rag_chain.invoke(message)
response = output.split('ANSWER: ')[-1].strip()
return response
# Launch the Gradio chat interface
gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# from langchain.schema import AIMessage, HumanMessage
# import os
# hftoken = os.environ["hftoken"]
# from langchain_huggingface import HuggingFaceEndpoint
# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate
# # prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# # chain = prompt | llm | StrOutputParser()
# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)
# vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
# retriever = vectorstore.as_retriever()
# # from langchain.prompts import PromptTemplate
# from langchain_core.prompts import ChatPromptTemplate
# prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
# CONTEXT: {context}
# HISTORY: {history}
# QUESTION: {question}""")
# from langchain_core.runnables import RunnablePassthrough
# # Define the chat response function
# def chatresponse(message, history):
# # history_langchain_format = []
# # for human, ai in history:
# # history_langchain_format.append(HumanMessage(content=human))
# # history_langchain_format.append(AIMessage(content=ai))
# # history_langchain_format.append(HumanMessage(content=message))
# rag_chain = (
# {"context": retriever, "history": history, "question": RunnablePassthrough()}
# | prompt
# | llm
# | StrOutputParser()
# )
# output = rag_chain.invoke(message)
# response = output.split('ANSWER: ')[-1].strip()
# return response
# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# def chatresponse(message, history):
# return history
# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch() |