File size: 7,848 Bytes
f33adc1
537de10
f6433d8
527bfa3
 
 
 
 
 
 
 
 
 
 
 
3a2e9e6
 
527bfa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6433d8
199e5b0
 
 
 
 
527bfa3
ace9bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527bfa3
ace9bdd
527bfa3
 
 
 
 
 
 
 
 
f6433d8
 
 
 
ace9bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527bfa3
 
 
 
 
 
 
 
f6433d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
from langchain.schema import AIMessage, HumanMessage


import os
hftoken = os.environ["hftoken"]

from langchain_huggingface import HuggingFaceEndpoint

repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

# prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# chain = prompt | llm | StrOutputParser()

# from langchain.document_loaders.csv_loader import CSVLoader
from langchain_community.document_loaders.csv_loader import CSVLoader


loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()

from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
model = "BAAI/bge-m3"
embeddings = HuggingFaceEndpointEmbeddings(model = model)



# Define the chat response function
def chatresponse(message, history):
    # history_langchain_format = []
    # for human, ai in history:
    #     history_langchain_format.append(HumanMessage(content=human))
    #     history_langchain_format.append(AIMessage(content=ai))
    # history_langchain_format.append(HumanMessage(content=message))

    data_vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
    history_vectorstore = Chroma.from_documents(documents = history, embedding = embeddings)
    vectorstore = data_vectorstore + history_vectorstore
    retriever = vectorstore.as_retriever()
    
    # from langchain.prompts import PromptTemplate
    
    from langchain_core.prompts import ChatPromptTemplate
    
    prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.
    
    In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
    If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
    If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.
    
    CONTEXT: {context}
    
    HISTORY: {history}
    
    QUESTION: {question}""")
    
    from langchain_core.runnables import RunnablePassthrough
    rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
    )

    
    output = rag_chain.invoke(message)
    response = output.split('ANSWER: ')[-1].strip()
    return response

# Launch the Gradio chat interface
gr.ChatInterface(chatresponse).launch()

# import gradio as gr
# from langchain.schema import AIMessage, HumanMessage


# import os
# hftoken = os.environ["hftoken"]

# from langchain_huggingface import HuggingFaceEndpoint

# repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)

# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.prompts import ChatPromptTemplate

# # prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
# # chain = prompt | llm | StrOutputParser()

# # from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_community.document_loaders.csv_loader import CSVLoader


# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# # CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
# model = "BAAI/bge-m3"
# embeddings = HuggingFaceEndpointEmbeddings(model = model)

# vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
# retriever = vectorstore.as_retriever()

# # from langchain.prompts import PromptTemplate

# from langchain_core.prompts import ChatPromptTemplate

# prompt = ChatPromptTemplate.from_template("""Given the following history, context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at rishi@aiotsmartlabs.com" Don't try to make up an answer.

# CONTEXT: {context}

# HISTORY: {history}

# QUESTION: {question}""")

# from langchain_core.runnables import RunnablePassthrough

# # Define the chat response function
# def chatresponse(message, history):
#     # history_langchain_format = []
#     # for human, ai in history:
#     #     history_langchain_format.append(HumanMessage(content=human))
#     #     history_langchain_format.append(AIMessage(content=ai))
#     # history_langchain_format.append(HumanMessage(content=message))

#     rag_chain = (
#     {"context": retriever, "history": history, "question": RunnablePassthrough()}
#     | prompt
#     | llm
#     | StrOutputParser()
#     )

    
#     output = rag_chain.invoke(message)
#     response = output.split('ANSWER: ')[-1].strip()
#     return response

# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()

# import gradio as gr

# def chatresponse(message, history):
#     return history

# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()

# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()