Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import torch.nn as nn | |
| from diffusers import EulerDiscreteScheduler, AutoencoderKL, UNet2DConditionModel | |
| from huggingface_hub import hf_hub_download | |
| from transformers import SiglipImageProcessor, SiglipVisionModel | |
| from torchvision.io import read_image | |
| import torchvision.transforms.v2 as transforms | |
| from torchvision.utils import make_grid | |
| class TryOffDiff(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
| self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True) | |
| self.proj = nn.Linear(1024, 77) | |
| self.norm = nn.LayerNorm(768) | |
| def adapt_embeddings(self, x): | |
| x = self.transformer(x) | |
| x = self.proj(x.permute(0, 2, 1)).permute(0, 2, 1) | |
| return self.norm(x) | |
| def forward(self, noisy_latents, t, cond_emb): | |
| cond_emb = self.adapt_embeddings(cond_emb) | |
| return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample | |
| class PadToSquare: | |
| def __call__(self, img): | |
| _, h, w = img.shape # Get the original dimensions | |
| max_side = max(h, w) | |
| pad_h = (max_side - h) // 2 | |
| pad_w = (max_side - w) // 2 | |
| padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h) | |
| return transforms.functional.pad(img, padding, padding_mode="edge") | |
| # Set device | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Initialize Image Encoder | |
| img_processor = SiglipImageProcessor.from_pretrained( | |
| "google/siglip-base-patch16-512", | |
| do_resize=False, | |
| do_rescale=False, | |
| do_normalize=False | |
| ) | |
| img_enc = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-512").eval().to(device) | |
| img_enc_transform = transforms.Compose([ | |
| PadToSquare(), # Custom transform to pad the image to a square | |
| transforms.Resize((512, 512)), | |
| transforms.ToDtype(torch.float32, scale=True), | |
| transforms.Normalize(mean=[0.5], std=[0.5]), | |
| ]) | |
| # Load TryOffDiff Model | |
| path_model = hf_hub_download( | |
| repo_id="rizavelioglu/tryoffdiff", | |
| filename="tryoffdiff.pth", # or one of ["ldm-1", "ldm-2", "ldm-3", ...], | |
| force_download=False | |
| ) | |
| path_scheduler = hf_hub_download( | |
| repo_id="rizavelioglu/tryoffdiff", | |
| filename="scheduler/scheduler_config.json", | |
| force_download=False | |
| ) | |
| net = TryOffDiff() | |
| net.load_state_dict(torch.load(path_model, weights_only=False)) | |
| net.eval().to(device) | |
| # Initialize VAE (only Decoder will be used) | |
| vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").eval().to(device) | |
| torch.cuda.empty_cache() | |
| # Define image generation function | |
| def generate_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False): | |
| # Configure scheduler | |
| scheduler = EulerDiscreteScheduler.from_pretrained(path_scheduler) | |
| scheduler.is_scale_input_called = True # suppress warning | |
| scheduler.set_timesteps(num_inference_steps) | |
| # Set random seed | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| x = torch.randn(1, 4, 64, 64, generator=generator, device=device) | |
| # Process input image | |
| cond_image = img_enc_transform(read_image(input_image)) | |
| inputs = {k: v.to(img_enc.device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()} | |
| cond_emb = img_enc(**inputs).last_hidden_state.to(device) | |
| # Prepare unconditioned embeddings | |
| uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None | |
| # Denoising loop with mixed precision | |
| with torch.autocast(device): | |
| for t in scheduler.timesteps: | |
| if guidance_scale > 1: | |
| noise_pred = net( | |
| torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb]) | |
| ).chunk(2) | |
| noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) | |
| else: | |
| noise_pred = net(x, t, cond_emb) | |
| scheduler_output = scheduler.step(noise_pred, t, x) | |
| x = scheduler_output.prev_sample | |
| # Decode preds | |
| decoded = vae.decode(1 / 0.18215 * scheduler_output.pred_original_sample).sample | |
| images = (decoded / 2 + 0.5).cpu() | |
| # Create grid | |
| grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True) | |
| if is_upscale: | |
| pass | |
| else: | |
| return transforms.ToPILImage()(grid) | |
| title = "Virtual Try-Off Generator" | |
| description = r""" | |
| This is the demo of the paper <a href="https://arxiv.org/abs/2411.18350">TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models</a>. | |
| <br>Upload an image of a clothed individual to generate a standardized garment image using TryOffDiff. | |
| <br> Check out the <a href="https://rizavelioglu.github.io/tryoffdiff/">project page</a> for more information. | |
| """ | |
| article = r""" | |
| Example images are sampled from the `VITON-HD-test` set, which the models did not see during training. | |
| <br>**Citation** <br>If you find our work useful in your research, please consider giving a star ⭐ and | |
| a citation: | |
| ``` | |
| @article{velioglu2024tryoffdiff, | |
| title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models}, | |
| author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara}, | |
| journal = {arXiv}, | |
| year = {2024}, | |
| note = {\url{https://doi.org/nt3n}} | |
| } | |
| ``` | |
| """ | |
| examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in sorted(os.listdir("examples/"))] | |
| # Create Gradio App | |
| demo = gr.Interface( | |
| fn=generate_image, | |
| inputs=[ | |
| gr.Image(type="filepath", label="Reference Image"), | |
| gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed"), | |
| gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance applied at s=1, hence faster inference."), | |
| gr.Slider(value=20, minimum=0, maximum=1000, step=10, label="# of Inference Steps"), | |
| gr.Checkbox(value=False, label="Upscale Output") | |
| ], | |
| outputs=gr.Image(type="pil", label="Generated Garment", height=512, width=512), | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples, | |
| examples_per_page=4, | |
| ) | |
| demo.launch() | |