File size: 1,849 Bytes
bc29378
 
 
 
 
 
 
 
958a364
387dd7e
bc29378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

import torch
import gradio as gr

from typing import TypedDict
from transformers import pipeline

# Create function to use our model on given text
def food_not_food_classifier(text: str) -> dict[str, float]:
    food_not_food_classifier = pipeline(task="text-classification",
                                         # Because our model is on Hugging Face already, we can pass in the model name directly
                                        model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
                                        device="cuda" if torch.cuda.is_available() else "cpu",
                                        top_k=None
                                        )
    outputs = food_not_food_classifier(text)[0]

    output_dict = {}
    for item in outputs:
        output_dict[item["label"]] = item["score"]

    return output_dict

description = """
A text classifier to determine if a sentence is about food or not food.

Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).

See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
"""

demo = gr.Interface(fn=food_not_food_classifier,
                    inputs="text",
                    outputs=gr.Label(num_top_classes=2),
                    title="πŸ—πŸš«πŸ₯‘ Food or Not Food Text Classifier",
                    description=description,
                    examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
                              ["A delicious photo of a plate of scrambled eggs, bacon and toast."]])

if __name__ == "__main__":
  demo.launch()