Update main.py
Browse files
main.py
CHANGED
|
@@ -1,91 +1,163 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
import httpx
|
| 4 |
import os
|
|
|
|
| 5 |
|
| 6 |
# --- Configuration ---
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
| 9 |
SEARCH_API_URL = "https://rkihacker-brave.hf.space/search"
|
| 10 |
|
| 11 |
# --- System Prompt ---
|
| 12 |
SYSTEM_PROMPT = """
|
| 13 |
-
You are Binglity, a
|
| 14 |
-
Your
|
| 15 |
-
When
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
| 18 |
|
| 19 |
# --- FastAPI App ---
|
| 20 |
app = FastAPI(
|
| 21 |
-
title="Binglity API",
|
| 22 |
-
description="A web search-powered
|
| 23 |
version="1.0.0",
|
| 24 |
)
|
| 25 |
|
| 26 |
-
# --- Pydantic Models ---
|
| 27 |
-
class
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
class SearchResult(BaseModel):
|
| 31 |
-
title: str
|
| 32 |
-
url: str
|
| 33 |
-
description: str
|
| 34 |
-
|
| 35 |
-
class SearchResponse(BaseModel):
|
| 36 |
-
binglity_response: str
|
| 37 |
-
search_results: list[SearchResult]
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# --- Web Search Function ---
|
| 41 |
-
async def perform_web_search(query: str) ->
|
| 42 |
"""
|
| 43 |
-
Performs a web search using an external API
|
| 44 |
"""
|
| 45 |
async with httpx.AsyncClient() as client:
|
| 46 |
try:
|
| 47 |
response = await client.get(
|
| 48 |
SEARCH_API_URL,
|
| 49 |
-
params={"query": query, "max_results":
|
| 50 |
)
|
| 51 |
response.raise_for_status()
|
| 52 |
-
|
| 53 |
-
return [SearchResult(**item) for item in results]
|
| 54 |
except httpx.HTTPStatusError as e:
|
| 55 |
-
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# --- API Endpoint ---
|
| 60 |
-
@app.post("/
|
| 61 |
-
async def
|
| 62 |
"""
|
| 63 |
-
|
|
|
|
| 64 |
"""
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
# to a large language model to generate a more nuanced response.
|
| 70 |
-
if not search_results:
|
| 71 |
-
binglity_response = "I couldn't find any relevant information for your query."
|
| 72 |
-
else:
|
| 73 |
-
response_intro = f"Here's what I found for '{request.query}':\n\n"
|
| 74 |
-
formatted_results = "\n\n".join(
|
| 75 |
-
f"Title: {res.title}\nDescription: {res.description}\nURL: {res.url}"
|
| 76 |
-
for res in search_results
|
| 77 |
)
|
| 78 |
-
binglity_response = SYSTEM_PROMPT + "\n\n" + response_intro + formatted_results
|
| 79 |
|
| 80 |
-
|
| 81 |
-
"
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
}
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
@app.get("/")
|
| 86 |
def read_root():
|
| 87 |
-
return {"message": "Welcome to the Binglity API"}
|
| 88 |
-
|
| 89 |
-
if __name__ == "__main__":
|
| 90 |
-
import uvicorn
|
| 91 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Request
|
| 2 |
+
from pydantic import BaseModel, Field
|
| 3 |
import httpx
|
| 4 |
import os
|
| 5 |
+
from typing import List, Dict, Any, Optional
|
| 6 |
|
| 7 |
# --- Configuration ---
|
| 8 |
+
# Your actual Inference API key should be set as an environment variable
|
| 9 |
+
INFERENCE_API_KEY = os.environ.get("INFERENCE_API_KEY", "inference-00050468cc1c4a20bd5ca0997c752329")
|
| 10 |
+
INFERENCE_API_URL = "https://api.inference.net/v1/chat/completions"
|
| 11 |
SEARCH_API_URL = "https://rkihacker-brave.hf.space/search"
|
| 12 |
|
| 13 |
# --- System Prompt ---
|
| 14 |
SYSTEM_PROMPT = """
|
| 15 |
+
You are "Binglity-Lite", a large language model acting as a helpful AI assistant.
|
| 16 |
+
Your primary function is to provide accurate, comprehensive, and helpful answers by synthesizing information from real-time web search results.
|
| 17 |
+
When you are given a user's query and a set of search results, you must follow these rules:
|
| 18 |
+
1. Carefully analyze the user's query to understand their intent.
|
| 19 |
+
2. Review all the provided search results to gather relevant facts, data, and perspectives.
|
| 20 |
+
3. Construct a single, coherent, and well-written response that directly answers the user's query.
|
| 21 |
+
4. Base your answer **only** on the information found in the provided search results. Do not use any prior knowledge.
|
| 22 |
+
5. If the search results do not contain enough information to answer the question, state that you couldn't find a definitive answer based on the search.
|
| 23 |
+
6. Do not list the search results. Instead, integrate the information from them into your response.
|
| 24 |
"""
|
| 25 |
|
| 26 |
# --- FastAPI App ---
|
| 27 |
app = FastAPI(
|
| 28 |
+
title="Binglity-Lite API",
|
| 29 |
+
description="A web search-powered chat completions API.",
|
| 30 |
version="1.0.0",
|
| 31 |
)
|
| 32 |
|
| 33 |
+
# --- Pydantic Models for OpenAI Compatibility ---
|
| 34 |
+
class ChatMessage(BaseModel):
|
| 35 |
+
role: str
|
| 36 |
+
content: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
class ChatCompletionRequest(BaseModel):
|
| 39 |
+
model: str
|
| 40 |
+
messages: List[ChatMessage]
|
| 41 |
+
max_tokens: Optional[int] = 1024
|
| 42 |
+
temperature: Optional[float] = 0.7
|
| 43 |
|
| 44 |
# --- Web Search Function ---
|
| 45 |
+
async def perform_web_search(query: str) -> List[Dict[str, Any]]:
|
| 46 |
"""
|
| 47 |
+
Performs a web search using an external API.
|
| 48 |
"""
|
| 49 |
async with httpx.AsyncClient() as client:
|
| 50 |
try:
|
| 51 |
response = await client.get(
|
| 52 |
SEARCH_API_URL,
|
| 53 |
+
params={"query": query, "max_results": 7}
|
| 54 |
)
|
| 55 |
response.raise_for_status()
|
| 56 |
+
return response.json()
|
|
|
|
| 57 |
except httpx.HTTPStatusError as e:
|
| 58 |
+
print(f"Error from search API: {e.response.text}")
|
| 59 |
+
return []
|
| 60 |
except Exception as e:
|
| 61 |
+
print(f"An unexpected error occurred during web search: {str(e)}")
|
| 62 |
+
return []
|
| 63 |
+
|
| 64 |
+
# --- Helper to format search results for the LLM ---
|
| 65 |
+
def format_search_results_for_prompt(results: List[Dict[str, Any]]) -> str:
|
| 66 |
+
"""
|
| 67 |
+
Formats the list of search result dictionaries into a string for the LLM prompt.
|
| 68 |
+
"""
|
| 69 |
+
if not results:
|
| 70 |
+
return "No search results found."
|
| 71 |
+
|
| 72 |
+
formatted = "Here are the web search results:\n\n"
|
| 73 |
+
for i, result in enumerate(results):
|
| 74 |
+
formatted += f"Result [{i+1}]:\n"
|
| 75 |
+
formatted += f"Title: {result.get('title', 'N/A')}\n"
|
| 76 |
+
formatted += f"URL: {result.get('url', 'N/A')}\n"
|
| 77 |
+
formatted += f"Description: {result.get('description', 'N/A')}\n\n"
|
| 78 |
+
return formatted
|
| 79 |
|
| 80 |
# --- API Endpoint ---
|
| 81 |
+
@app.post("/v1/chat/completions")
|
| 82 |
+
async def chat_completions(request: ChatCompletionRequest):
|
| 83 |
"""
|
| 84 |
+
Implements a chat completions endpoint compatible with OpenAI's API.
|
| 85 |
+
It performs a web search based on the user's last message.
|
| 86 |
"""
|
| 87 |
+
if request.model != "Binglity-Lite":
|
| 88 |
+
raise HTTPException(
|
| 89 |
+
status_code=400,
|
| 90 |
+
detail=f"Model not supported. Please use 'Binglity-Lite'. You used '{request.model}'.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
|
|
|
| 92 |
|
| 93 |
+
if not request.messages:
|
| 94 |
+
raise HTTPException(status_code=400, detail="The 'messages' field is required.")
|
| 95 |
+
|
| 96 |
+
# Extract the last user message as the query
|
| 97 |
+
user_query = request.messages[-1].content
|
| 98 |
+
user_role = request.messages[-1].role
|
| 99 |
+
|
| 100 |
+
if user_role.lower() != 'user':
|
| 101 |
+
raise HTTPException(status_code=400, detail="The last message must be from the 'user'.")
|
| 102 |
+
|
| 103 |
+
# 1. Perform Web Search
|
| 104 |
+
search_results = await perform_web_search(user_query)
|
| 105 |
+
formatted_results = format_search_results_for_prompt(search_results)
|
| 106 |
+
|
| 107 |
+
# 2. Construct the prompt for the external LLM
|
| 108 |
+
final_prompt = f"User Query: {user_query}\n\n{formatted_results}"
|
| 109 |
+
|
| 110 |
+
# 3. Call the external Inference API
|
| 111 |
+
headers = {
|
| 112 |
+
"Authorization": f"Bearer {INFERENCE_API_KEY}",
|
| 113 |
+
"Content-Type": "application/json",
|
| 114 |
}
|
| 115 |
|
| 116 |
+
# The payload for the external API uses our system prompt and the combined user query + search results
|
| 117 |
+
payload = {
|
| 118 |
+
"model": "meta-llama/llama-3.1-8b-instruct", # The actual model used by the inference API
|
| 119 |
+
"messages": [
|
| 120 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 121 |
+
{"role": "user", "content": final_prompt},
|
| 122 |
+
],
|
| 123 |
+
"max_tokens": request.max_tokens,
|
| 124 |
+
"temperature": request.temperature,
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 128 |
+
try:
|
| 129 |
+
response = await client.post(INFERENCE_API_URL, json=payload, headers=headers)
|
| 130 |
+
response.raise_for_status()
|
| 131 |
+
model_response = response.json()
|
| 132 |
+
|
| 133 |
+
# 4. Format the response to be OpenAI API compliant
|
| 134 |
+
# This part depends on the exact structure of the inference API's response
|
| 135 |
+
# Assuming it's similar to OpenAI's, we extract the message content
|
| 136 |
+
generated_content = model_response["choices"][0]["message"]["content"]
|
| 137 |
+
|
| 138 |
+
api_response = {
|
| 139 |
+
"id": model_response.get("id", "chatcmpl-binglity-lite-123"),
|
| 140 |
+
"object": "chat.completion",
|
| 141 |
+
"created": model_response.get("created", 0),
|
| 142 |
+
"model": "Binglity-Lite",
|
| 143 |
+
"choices": [{
|
| 144 |
+
"index": 0,
|
| 145 |
+
"message": {
|
| 146 |
+
"role": "assistant",
|
| 147 |
+
"content": generated_content,
|
| 148 |
+
},
|
| 149 |
+
"finish_reason": "stop",
|
| 150 |
+
}],
|
| 151 |
+
"usage": model_response.get("usage", {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}),
|
| 152 |
+
}
|
| 153 |
+
return api_response
|
| 154 |
+
|
| 155 |
+
except httpx.HTTPStatusError as e:
|
| 156 |
+
raise HTTPException(status_code=e.response.status_code, detail=f"Error from inference API: {e.response.text}")
|
| 157 |
+
except Exception as e:
|
| 158 |
+
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")
|
| 159 |
+
|
| 160 |
+
|
| 161 |
@app.get("/")
|
| 162 |
def read_root():
|
| 163 |
+
return {"message": "Welcome to the Binglity-Lite API. Use the /v1/chat/completions endpoint."}
|
|
|
|
|
|
|
|
|
|
|
|