rkihacker commited on
Commit
fc4bb43
·
verified ·
1 Parent(s): 0e51f31

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +37 -54
main.py CHANGED
@@ -15,25 +15,43 @@ SEARCH_API_URL = "https://rkihacker-brave.hf.space/search"
15
  MODEL_NAME = "Binglity-Lite"
16
  BACKEND_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"
17
 
18
- # --- A More Advanced System Prompt ---
19
  SYSTEM_PROMPT = """
20
- You are "Binglity-Lite", a state-of-the-art AI assistant. Your purpose is to provide accurate, unbiased, and comprehensive answers by synthesizing information from real-time web search results.
21
-
22
- **Your Instructions:**
23
- 1. **Analyze the User's Query**: Deeply understand the user's question, intent, and the specific information they are seeking.
24
- 2. **Synthesize, Don't List**: Do not simply list or summarize the search results. Your primary task is to integrate the information from the multiple sources provided into a single, cohesive, and well-structured response.
25
- 3. **Be Factual and Unbiased**: Base your entire response ONLY on the information contained within the provided search results. Do not introduce any external knowledge or personal opinions.
26
- 4. **Handle Contradictions**: If the search results present conflicting information, acknowledge the discrepancy and present the different viewpoints as found in the sources.
27
- 5. **Address Insufficient Information**: If the search results do not contain enough information to provide a complete answer, explicitly state that. Do not speculate or fill in the gaps.
28
- 6. **Maintain a Helpful Tone**: Your persona is knowledgeable, helpful, and neutral.
29
- 7. **Structure for Clarity**: Use clear language and logical formatting (like paragraphs or bullet points if appropriate) to make the information easy to understand.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  """
31
 
 
32
  # --- FastAPI App ---
33
  app = FastAPI(
34
  title="Binglity-Lite API",
35
  description="A web search-powered, streaming-capable chat completions API.",
36
- version="1.1.0",
37
  )
38
 
39
  # --- Pydantic Models for OpenAI Compatibility ---
@@ -67,7 +85,7 @@ async def perform_web_search(query: str) -> List[Dict[str, Any]]:
67
 
68
  def format_search_results_for_prompt(results: List[Dict[str, Any]]) -> str:
69
  if not results:
70
- return "No relevant search results were found. Please inform the user that you could not find information on their query."
71
 
72
  formatted = "### Web Search Results ###\n\n"
73
  for i, result in enumerate(results):
@@ -79,16 +97,11 @@ def format_search_results_for_prompt(results: List[Dict[str, Any]]) -> str:
79
 
80
  # --- Streaming Logic ---
81
  async def stream_response_generator(payload: Dict[str, Any]) -> AsyncGenerator[str, None]:
82
- """
83
- Yields chunks from the inference API, formatted for OpenAI compatibility.
84
- """
85
  headers = {
86
  "Authorization": f"Bearer {INFERENCE_API_KEY}",
87
  "Content-Type": "application/json",
88
  "Accept": "text/event-stream"
89
  }
90
-
91
- # Create a unique ID for the response stream
92
  response_id = f"chatcmpl-{uuid.uuid4()}"
93
  created_time = int(time.time())
94
 
@@ -98,33 +111,22 @@ async def stream_response_generator(payload: Dict[str, Any]) -> AsyncGenerator[s
98
  error_content = await response.aread()
99
  raise HTTPException(status_code=response.status_code, detail=f"Error from inference API: {error_content.decode()}")
100
 
101
- # Stream the response line by line
102
  async for line in response.aiter_lines():
103
  if line.startswith("data:"):
104
  line_data = line[5:].strip()
105
  if line_data == "[DONE]":
106
- # Send the final data chunk and the done message
107
  yield f"data: {json.dumps({'id': response_id, 'model': MODEL_NAME, 'object': 'chat.completion.chunk', 'created': created_time, 'choices': [{'index': 0, 'delta': {}, 'finish_reason': 'stop'}]})}\n\n"
108
  yield "data: [DONE]\n\n"
109
  break
110
 
111
  try:
112
  chunk = json.loads(line_data)
113
- # Reformat the chunk to be OpenAI compliant
114
  formatted_chunk = {
115
- "id": response_id,
116
- "object": "chat.completion.chunk",
117
- "created": created_time,
118
- "model": MODEL_NAME,
119
- "choices": [{
120
- "index": 0,
121
- "delta": chunk["choices"][0].get("delta", {}),
122
- "finish_reason": chunk["choices"][0].get("finish_reason")
123
- }]
124
  }
125
  yield f"data: {json.dumps(formatted_chunk)}\n\n"
126
  except json.JSONDecodeError:
127
- print(f"Could not decode JSON from line: {line_data}")
128
  continue
129
 
130
  # --- API Endpoint ---
@@ -137,51 +139,32 @@ async def chat_completions(request: ChatCompletionRequest):
137
  if not user_query or request.messages[-1].role.lower() != 'user':
138
  raise HTTPException(status_code=400, detail="The last message must be from the 'user' and contain content.")
139
 
140
- # 1. Perform Web Search
141
  search_results = await perform_web_search(user_query)
142
  formatted_results = format_search_results_for_prompt(search_results)
143
 
144
- # 2. Construct prompt for the backend model
145
- final_user_prompt = f"User's question: \"{user_query}\"\n\nBased ONLY on the provided search results below, answer the user's question.\n\n{formatted_results}"
146
 
147
- # 3. Prepare payload for Inference API
148
  payload = {
149
  "model": BACKEND_MODEL,
150
  "messages": [
151
  {"role": "system", "content": SYSTEM_PROMPT},
152
  {"role": "user", "content": final_user_prompt},
153
  ],
154
- "max_tokens": request.max_tokens,
155
- "temperature": request.temperature,
156
- "stream": request.stream,
157
  }
158
 
159
- # 4. Handle streaming or single response
160
  if request.stream:
161
  return StreamingResponse(stream_response_generator(payload), media_type="text/event-stream")
162
  else:
163
- # Standard non-streaming request
164
  headers = {"Authorization": f"Bearer {INFERENCE_API_KEY}"}
165
  async with httpx.AsyncClient(timeout=120.0) as client:
166
  try:
167
  response = await client.post(INFERENCE_API_URL, json=payload, headers=headers)
168
  response.raise_for_status()
169
  model_response = response.json()
170
-
171
- # Format response to be OpenAI API compliant
172
  return {
173
- "id": model_response.get("id", f"chatcmpl-{uuid.uuid4()}"),
174
- "object": "chat.completion",
175
- "created": model_response.get("created", int(time.time())),
176
- "model": MODEL_NAME,
177
- "choices": [{
178
- "index": 0,
179
- "message": {
180
- "role": "assistant",
181
- "content": model_response["choices"][0]["message"]["content"],
182
- },
183
- "finish_reason": "stop",
184
- }],
185
  "usage": model_response.get("usage", {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}),
186
  }
187
  except httpx.HTTPStatusError as e:
 
15
  MODEL_NAME = "Binglity-Lite"
16
  BACKEND_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"
17
 
18
+ # --- Final Advanced System Prompt ---
19
  SYSTEM_PROMPT = """
20
+ You are "Binglity-Lite", a highly advanced AI search assistant. Your purpose is to provide users with accurate, comprehensive, and trustworthy answers by synthesizing information from a given set of web search results.
21
+
22
+ **Core Directives:**
23
+
24
+ 1. **Answer Directly**: Immediately address the user's question. **Do not** use introductory phrases like "Based on the search results..." or "Here is the information I found...". Your tone should be confident, objective, and encyclopedic.
25
+
26
+ 2. **Synthesize, Don't Summarize**: Your primary task is to weave information from multiple sources into a single, cohesive, and well-structured answer. Do not simply describe what each source says one by one.
27
+
28
+ 3. **Cite with Inline Markdown Links**: This is your most important instruction. When you present a fact or a piece of information from a source, you **must** cite it immediately using an inline Markdown link.
29
+ * **Format**: The format must be `[phrase or sentence containing the fact](URL)`. The URL must come from the `URL:` field of the provided source.
30
+ * **Example**: If a source with URL `https://example.com/science` says "The Earth is the third planet from the Sun", your output should be: "The Earth is the [third planet from the Sun](https://example.com/science)."
31
+ * **Rule**: Every piece of information in your answer must be attributable to a source via these inline links.
32
+
33
+ 4. **Be Fact-Based**: Your entire response must be based **exclusively** on the information provided in the search results. Do not use any outside knowledge.
34
+
35
+ 5. **Filter for Relevance**: If a search result is not relevant to the user's query, ignore it completely. Do not mention it in your response.
36
+
37
+ 6. **Handle Ambiguity**: If the search results are contradictory or insufficient to answer the question fully, state this clearly in your response, citing the conflicting sources.
38
+
39
+ **Final Output Structure:**
40
+
41
+ Your final response MUST be structured in two parts:
42
+
43
+ 1. **The Synthesized Answer**: A well-written response that directly answers the user's query, with facts and statements properly cited using inline Markdown links as described above.
44
+
45
+ 2. **Sources Section**: After the answer, add a section header `## Sources`. Under this header, provide a bulleted list of the full titles and URLs of every source you used.
46
+ * **Format**: `- [Title of Source](URL)`
47
  """
48
 
49
+
50
  # --- FastAPI App ---
51
  app = FastAPI(
52
  title="Binglity-Lite API",
53
  description="A web search-powered, streaming-capable chat completions API.",
54
+ version="1.2.0",
55
  )
56
 
57
  # --- Pydantic Models for OpenAI Compatibility ---
 
85
 
86
  def format_search_results_for_prompt(results: List[Dict[str, Any]]) -> str:
87
  if not results:
88
+ return "No relevant search results were found. Inform the user that you could not find information on their query."
89
 
90
  formatted = "### Web Search Results ###\n\n"
91
  for i, result in enumerate(results):
 
97
 
98
  # --- Streaming Logic ---
99
  async def stream_response_generator(payload: Dict[str, Any]) -> AsyncGenerator[str, None]:
 
 
 
100
  headers = {
101
  "Authorization": f"Bearer {INFERENCE_API_KEY}",
102
  "Content-Type": "application/json",
103
  "Accept": "text/event-stream"
104
  }
 
 
105
  response_id = f"chatcmpl-{uuid.uuid4()}"
106
  created_time = int(time.time())
107
 
 
111
  error_content = await response.aread()
112
  raise HTTPException(status_code=response.status_code, detail=f"Error from inference API: {error_content.decode()}")
113
 
 
114
  async for line in response.aiter_lines():
115
  if line.startswith("data:"):
116
  line_data = line[5:].strip()
117
  if line_data == "[DONE]":
 
118
  yield f"data: {json.dumps({'id': response_id, 'model': MODEL_NAME, 'object': 'chat.completion.chunk', 'created': created_time, 'choices': [{'index': 0, 'delta': {}, 'finish_reason': 'stop'}]})}\n\n"
119
  yield "data: [DONE]\n\n"
120
  break
121
 
122
  try:
123
  chunk = json.loads(line_data)
 
124
  formatted_chunk = {
125
+ "id": response_id, "object": "chat.completion.chunk", "created": created_time, "model": MODEL_NAME,
126
+ "choices": [{"index": 0, "delta": chunk["choices"][0].get("delta", {}), "finish_reason": chunk["choices"][0].get("finish_reason")}]
 
 
 
 
 
 
 
127
  }
128
  yield f"data: {json.dumps(formatted_chunk)}\n\n"
129
  except json.JSONDecodeError:
 
130
  continue
131
 
132
  # --- API Endpoint ---
 
139
  if not user_query or request.messages[-1].role.lower() != 'user':
140
  raise HTTPException(status_code=400, detail="The last message must be from the 'user' and contain content.")
141
 
 
142
  search_results = await perform_web_search(user_query)
143
  formatted_results = format_search_results_for_prompt(search_results)
144
 
145
+ final_user_prompt = f"User's question: \"{user_query}\"\n\nUse the web search results below to answer the user's question. Follow all rules in your system prompt exactly.\n\n{formatted_results}"
 
146
 
 
147
  payload = {
148
  "model": BACKEND_MODEL,
149
  "messages": [
150
  {"role": "system", "content": SYSTEM_PROMPT},
151
  {"role": "user", "content": final_user_prompt},
152
  ],
153
+ "max_tokens": request.max_tokens, "temperature": request.temperature, "stream": request.stream,
 
 
154
  }
155
 
 
156
  if request.stream:
157
  return StreamingResponse(stream_response_generator(payload), media_type="text/event-stream")
158
  else:
 
159
  headers = {"Authorization": f"Bearer {INFERENCE_API_KEY}"}
160
  async with httpx.AsyncClient(timeout=120.0) as client:
161
  try:
162
  response = await client.post(INFERENCE_API_URL, json=payload, headers=headers)
163
  response.raise_for_status()
164
  model_response = response.json()
 
 
165
  return {
166
+ "id": model_response.get("id", f"chatcmpl-{uuid.uuid4()}"), "object": "chat.completion", "created": model_response.get("created", int(time.time())), "model": MODEL_NAME,
167
+ "choices": [{"index": 0, "message": {"role": "assistant", "content": model_response["choices"][0]["message"]["content"],}, "finish_reason": "stop",}],
 
 
 
 
 
 
 
 
 
 
168
  "usage": model_response.get("usage", {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}),
169
  }
170
  except httpx.HTTPStatusError as e: