File size: 10,036 Bytes
89b138d
 
 
 
1120bba
 
89b138d
 
 
 
 
 
 
 
 
 
 
 
 
 
1120bba
 
89b138d
 
 
e58046c
89b138d
 
e58046c
89b138d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e58046c
89b138d
e58046c
 
89b138d
 
 
 
 
 
 
 
 
 
 
1120bba
89b138d
 
1120bba
89b138d
1120bba
 
 
89b138d
 
 
 
 
1120bba
89b138d
1120bba
89b138d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120bba
 
 
 
89b138d
1120bba
89b138d
 
1120bba
89b138d
 
 
 
1120bba
89b138d
1120bba
 
 
89b138d
 
 
 
1120bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b138d
 
 
 
 
1120bba
89b138d
 
 
 
 
 
 
 
 
1120bba
 
89b138d
 
 
 
1120bba
89b138d
 
 
 
 
 
 
 
1120bba
89b138d
e58046c
89b138d
1120bba
89b138d
 
 
 
 
 
 
 
 
 
 
1120bba
89b138d
 
 
1120bba
89b138d
1120bba
89b138d
1120bba
89b138d
 
 
 
 
 
1120bba
 
89b138d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import httpx
import json
import time
import asyncio
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
from sse_starlette.sse import EventSourceResponse

# Load environment variables from .env file
load_dotenv()

# --- Configuration ---
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
    raise ValueError("REPLICATE_API_TOKEN environment variable not set.")

POLLING_INTERVAL_SECONDS = 1  # How often to poll for updates

# --- FastAPI App Initialization ---
app = FastAPI(
    title="Replicate to OpenAI Compatibility Layer",
    version="1.1.1 (SyntaxError Fixed)",
)

# --- Pydantic Models for OpenAI Compatibility ---

class ModelCard(BaseModel):
    id: str
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "replicate"

class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard] = []

class ChatMessage(BaseModel):
    role: Literal["system", "user", "assistant", "tool"]
    content: Union[str, List[Dict[str, Any]]]

class ToolFunction(BaseModel):
    name: str
    description: str
    parameters: Dict[str, Any]

class Tool(BaseModel):
    type: Literal["function"]
    function: ToolFunction

class OpenAIChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: Optional[float] = 0.7
    top_p: Optional[float] = 1.0
    max_tokens: Optional[int] = None
    stream: Optional[bool] = False
    tools: Optional[List[Tool]] = None
    tool_choice: Optional[Union[str, Dict]] = None

# --- Replicate Model Mapping ---
SUPPORTED_MODELS = {
    "llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
    "claude-4.5-haiku": "anthropic/claude-4.5-haiku"
}


# --- Helper Functions ---

def format_tools_for_prompt(tools: List[Tool]) -> str:
    """Converts OpenAI tools to a string for the system prompt."""
    if not tools:
        return ""
    
    prompt = "You have access to the following tools. To use a tool, respond with a JSON object in the following format:\n"
    # *** THIS IS THE CORRECTED LINE ***
    prompt += '{"type": "tool_call", "name": "tool_name", "arguments": {"arg_name": "value"}}\n\n'
    prompt += "Available tools:\n"
    for tool in tools:
        prompt += json.dumps(tool.function.dict(), indent=2) + "\n"
    return prompt

def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
    """Prepares the input payload for the Replicate API."""
    input_data = {}
    prompt_parts = []
    system_prompt = ""
    image_url = None

    for message in request.messages:
        if message.role == "system":
            system_prompt += str(message.content) + "\n"
        elif message.role == "user":
            content = message.content
            if isinstance(content, list):
                for item in content:
                    if item.get("type") == "text":
                        prompt_parts.append(f"User: {item.get('text', '')}")
                    elif item.get("type") == "image_url":
                        image_url = item.get("image_url", {}).get("url")
            else:
                prompt_parts.append(f"User: {str(content)}")
        elif message.role == "assistant":
            prompt_parts.append(f"Assistant: {str(message.content)}")

    if request.tools:
        tool_prompt = format_tools_for_prompt(request.tools)
        system_prompt += "\n" + tool_prompt

    input_data["prompt"] = "\n".join(prompt_parts)
    if system_prompt:
        input_data["system_prompt"] = system_prompt
    if image_url:
        input_data["image"] = image_url

    if request.temperature is not None:
        input_data["temperature"] = request.temperature
    if request.top_p is not None:
        input_data["top_p"] = request.top_p
    if request.max_tokens is not None:
        input_data["max_new_tokens"] = request.max_tokens

    return input_data

async def stream_replicate_with_polling(model_id: str, payload: dict):
    """
    Creates a prediction and then polls the 'get' URL to stream back results.
    """
    url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
    headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
    
    async with httpx.AsyncClient(timeout=300) as client:
        # 1. Start the prediction
        try:
            response = await client.post(url, headers=headers, json={"input": payload})
            response.raise_for_status()
            prediction = response.json()
            get_url = prediction.get("urls", {}).get("get")

            if not get_url:
                error_detail = prediction.get("detail", "Failed to start prediction.")
                yield f"data: {json.dumps({'error': error_detail})}\n\n"
                return
        except httpx.HTTPStatusError as e:
            yield f"data: {json.dumps({'error': str(e.response.text)})}\n\n"
            return
        
        # 2. Poll the prediction 'get' URL for updates
        previous_output = ""
        status = ""
        while status not in ["succeeded", "failed", "canceled"]:
            await asyncio.sleep(POLLING_INTERVAL_SECONDS)
            try:
                poll_response = await client.get(get_url, headers=headers)
                poll_response.raise_for_status()
                prediction_update = poll_response.json()
                status = prediction_update["status"]

                if status == "failed":
                    error_detail = prediction_update.get("error", "Prediction failed.")
                    yield f"data: {json.dumps({'error': error_detail})}\n\n"
                    break

                if "output" in prediction_update and prediction_update["output"] is not None:
                    current_output = "".join(prediction_update["output"])
                    new_chunk = current_output[len(previous_output):]
                    
                    if new_chunk:
                        chunk = {
                            "id": prediction["id"],
                            "object": "chat.completion.chunk",
                            "created": int(time.time()),
                            "model": model_id,
                            "choices": [{"index": 0, "delta": {"content": new_chunk}, "finish_reason": None}]
                        }
                        yield f"data: {json.dumps(chunk)}\n\n"
                        previous_output = current_output
            
            except httpx.HTTPStatusError as e:
                print(f"Warning: Polling failed with status {e.response.status_code}, retrying...")
            except Exception as e:
                yield f"data: {json.dumps({'error': f'Polling error: {str(e)}'})}\n\n"
                break
    
    # Send the final done signal
    done_chunk = {
        "id": prediction["id"],
        "object": "chat.completion.chunk",
        "created": int(time.time()),
        "model": model_id,
        "choices": [{"index": 0, "delta": {}, "finish_reason": "stop" if status == "succeeded" else "error"}]
    }
    yield f"data: {json.dumps(done_chunk)}\n\n"
    yield "data: [DONE]\n\n"


# --- API Endpoints ---

@app.get("/v1/models", response_model=ModelList)
async def list_models():
    """Lists the available models."""
    model_cards = [ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()]
    return ModelList(data=model_cards)

@app.post("/v1/chat/completions")
async def create_chat_completion(request: OpenAIChatCompletionRequest):
    """Creates a chat completion."""
    model_key = request.model
    if model_key not in SUPPORTED_MODELS:
        raise HTTPException(status_code=404, detail=f"Model not found. Supported models: {list(SUPPORTED_MODELS.keys())}")
    
    replicate_model_id = SUPPORTED_MODELS[model_key]
    replicate_input = prepare_replicate_input(request)

    if request.stream:
        return EventSourceResponse(stream_replicate_with_polling(replicate_model_id, replicate_input))
    
    # Synchronous request
    url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
    headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"}

    async with httpx.AsyncClient(timeout=150) as client:
        try:
            response = await client.post(url, headers=headers, json={"input": replicate_input})
            response.raise_for_status()
            prediction = response.json()
            
            output = prediction.get("output", "")
            if isinstance(output, list):
                output = "".join(output)

            # Basic tool call detection
            try:
                tool_call_data = json.loads(output)
                if tool_call_data.get("type") == "tool_call":
                    message_content, tool_calls = None, [{"id": f"call_{int(time.time())}", "type": "function", "function": {"name": tool_call_data["name"], "arguments": json.dumps(tool_call_data["arguments"])}}]
                else:
                    message_content, tool_calls = output, None
            except (json.JSONDecodeError, TypeError):
                message_content, tool_calls = output, None

            completion_response = {
                "id": prediction["id"],
                "object": "chat.completion",
                "created": int(time.time()),
                "model": model_key,
                "choices": [{"index": 0, "message": {"role": "assistant", "content": message_content, "tool_calls": tool_calls}, "finish_reason": "stop"}],
                "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
            }
            return JSONResponse(content=completion_response)

        except httpx.HTTPStatusError as e:
            raise HTTPException(status_code=e.response.status_code, detail=e.response.text)