File size: 10,036 Bytes
89b138d 1120bba 89b138d 1120bba 89b138d e58046c 89b138d e58046c 89b138d e58046c 89b138d e58046c 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d e58046c 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d 1120bba 89b138d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import httpx
import json
import time
import asyncio
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
from sse_starlette.sse import EventSourceResponse
# Load environment variables from .env file
load_dotenv()
# --- Configuration ---
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
POLLING_INTERVAL_SECONDS = 1 # How often to poll for updates
# --- FastAPI App Initialization ---
app = FastAPI(
title="Replicate to OpenAI Compatibility Layer",
version="1.1.1 (SyntaxError Fixed)",
)
# --- Pydantic Models for OpenAI Compatibility ---
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "replicate"
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["system", "user", "assistant", "tool"]
content: Union[str, List[Dict[str, Any]]]
class ToolFunction(BaseModel):
name: str
description: str
parameters: Dict[str, Any]
class Tool(BaseModel):
type: Literal["function"]
function: ToolFunction
class OpenAIChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
max_tokens: Optional[int] = None
stream: Optional[bool] = False
tools: Optional[List[Tool]] = None
tool_choice: Optional[Union[str, Dict]] = None
# --- Replicate Model Mapping ---
SUPPORTED_MODELS = {
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"claude-4.5-haiku": "anthropic/claude-4.5-haiku"
}
# --- Helper Functions ---
def format_tools_for_prompt(tools: List[Tool]) -> str:
"""Converts OpenAI tools to a string for the system prompt."""
if not tools:
return ""
prompt = "You have access to the following tools. To use a tool, respond with a JSON object in the following format:\n"
# *** THIS IS THE CORRECTED LINE ***
prompt += '{"type": "tool_call", "name": "tool_name", "arguments": {"arg_name": "value"}}\n\n'
prompt += "Available tools:\n"
for tool in tools:
prompt += json.dumps(tool.function.dict(), indent=2) + "\n"
return prompt
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
"""Prepares the input payload for the Replicate API."""
input_data = {}
prompt_parts = []
system_prompt = ""
image_url = None
for message in request.messages:
if message.role == "system":
system_prompt += str(message.content) + "\n"
elif message.role == "user":
content = message.content
if isinstance(content, list):
for item in content:
if item.get("type") == "text":
prompt_parts.append(f"User: {item.get('text', '')}")
elif item.get("type") == "image_url":
image_url = item.get("image_url", {}).get("url")
else:
prompt_parts.append(f"User: {str(content)}")
elif message.role == "assistant":
prompt_parts.append(f"Assistant: {str(message.content)}")
if request.tools:
tool_prompt = format_tools_for_prompt(request.tools)
system_prompt += "\n" + tool_prompt
input_data["prompt"] = "\n".join(prompt_parts)
if system_prompt:
input_data["system_prompt"] = system_prompt
if image_url:
input_data["image"] = image_url
if request.temperature is not None:
input_data["temperature"] = request.temperature
if request.top_p is not None:
input_data["top_p"] = request.top_p
if request.max_tokens is not None:
input_data["max_new_tokens"] = request.max_tokens
return input_data
async def stream_replicate_with_polling(model_id: str, payload: dict):
"""
Creates a prediction and then polls the 'get' URL to stream back results.
"""
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
async with httpx.AsyncClient(timeout=300) as client:
# 1. Start the prediction
try:
response = await client.post(url, headers=headers, json={"input": payload})
response.raise_for_status()
prediction = response.json()
get_url = prediction.get("urls", {}).get("get")
if not get_url:
error_detail = prediction.get("detail", "Failed to start prediction.")
yield f"data: {json.dumps({'error': error_detail})}\n\n"
return
except httpx.HTTPStatusError as e:
yield f"data: {json.dumps({'error': str(e.response.text)})}\n\n"
return
# 2. Poll the prediction 'get' URL for updates
previous_output = ""
status = ""
while status not in ["succeeded", "failed", "canceled"]:
await asyncio.sleep(POLLING_INTERVAL_SECONDS)
try:
poll_response = await client.get(get_url, headers=headers)
poll_response.raise_for_status()
prediction_update = poll_response.json()
status = prediction_update["status"]
if status == "failed":
error_detail = prediction_update.get("error", "Prediction failed.")
yield f"data: {json.dumps({'error': error_detail})}\n\n"
break
if "output" in prediction_update and prediction_update["output"] is not None:
current_output = "".join(prediction_update["output"])
new_chunk = current_output[len(previous_output):]
if new_chunk:
chunk = {
"id": prediction["id"],
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_id,
"choices": [{"index": 0, "delta": {"content": new_chunk}, "finish_reason": None}]
}
yield f"data: {json.dumps(chunk)}\n\n"
previous_output = current_output
except httpx.HTTPStatusError as e:
print(f"Warning: Polling failed with status {e.response.status_code}, retrying...")
except Exception as e:
yield f"data: {json.dumps({'error': f'Polling error: {str(e)}'})}\n\n"
break
# Send the final done signal
done_chunk = {
"id": prediction["id"],
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop" if status == "succeeded" else "error"}]
}
yield f"data: {json.dumps(done_chunk)}\n\n"
yield "data: [DONE]\n\n"
# --- API Endpoints ---
@app.get("/v1/models", response_model=ModelList)
async def list_models():
"""Lists the available models."""
model_cards = [ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()]
return ModelList(data=model_cards)
@app.post("/v1/chat/completions")
async def create_chat_completion(request: OpenAIChatCompletionRequest):
"""Creates a chat completion."""
model_key = request.model
if model_key not in SUPPORTED_MODELS:
raise HTTPException(status_code=404, detail=f"Model not found. Supported models: {list(SUPPORTED_MODELS.keys())}")
replicate_model_id = SUPPORTED_MODELS[model_key]
replicate_input = prepare_replicate_input(request)
if request.stream:
return EventSourceResponse(stream_replicate_with_polling(replicate_model_id, replicate_input))
# Synchronous request
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"}
async with httpx.AsyncClient(timeout=150) as client:
try:
response = await client.post(url, headers=headers, json={"input": replicate_input})
response.raise_for_status()
prediction = response.json()
output = prediction.get("output", "")
if isinstance(output, list):
output = "".join(output)
# Basic tool call detection
try:
tool_call_data = json.loads(output)
if tool_call_data.get("type") == "tool_call":
message_content, tool_calls = None, [{"id": f"call_{int(time.time())}", "type": "function", "function": {"name": tool_call_data["name"], "arguments": json.dumps(tool_call_data["arguments"])}}]
else:
message_content, tool_calls = output, None
except (json.JSONDecodeError, TypeError):
message_content, tool_calls = output, None
completion_response = {
"id": prediction["id"],
"object": "chat.completion",
"created": int(time.time()),
"model": model_key,
"choices": [{"index": 0, "message": {"role": "assistant", "content": message_content, "tool_calls": tool_calls}, "finish_reason": "stop"}],
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
}
return JSONResponse(content=completion_response)
except httpx.HTTPStatusError as e:
raise HTTPException(status_code=e.response.status_code, detail=e.response.text) |