R2OAI / main.py
rkihacker's picture
Update main.py
1120bba verified
raw
history blame
10.3 kB
import os
import httpx
import json
import time
import asyncio
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
from sse_starlette.sse import EventSourceResponse
# Load environment variables from .env file
load_dotenv()
# --- Configuration ---
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
POLLING_INTERVAL_SECONDS = 1 # How often to poll for updates
# --- FastAPI App Initialization ---
app = FastAPI(
title="Replicate to OpenAI Compatibility Layer",
version="1.1.0 (Polling Strategy)",
)
# --- Pydantic Models for OpenAI Compatibility (No Changes) ---
# /v1/models endpoint
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "replicate"
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
# /v1/chat/completions endpoint
class ChatMessage(BaseModel):
role: Literal["system", "user", "assistant", "tool"]
content: Union[str, List[Dict[str, Any]]]
class ToolFunction(BaseModel):
name: str
description: str
parameters: Dict[str, Any]
class Tool(BaseModel):
type: Literal["function"]
function: ToolFunction
class OpenAIChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
max_tokens: Optional[int] = None
stream: Optional[bool] = False
tools: Optional[List[Tool]] = None
tool_choice: Optional[Union[str, Dict]] = None
# --- Replicate Model Mapping ---
SUPPORTED_MODELS = {
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"claude-4.5-haiku": "anthropic/claude-4.5-haiku"
}
# --- Helper Functions ---
def format_tools_for_prompt(tools: List[Tool]) -> str:
"""Converts OpenAI tools to a string for the system prompt."""
if not tools:
return ""
prompt = "You have access to the following tools. To use a tool, respond with a JSON object in the following format:\n"
prompt += '{"type": "tool_call", "name": "tool_name", "arguments": {"arg_name": "value"}}\n\n"
prompt += "Available tools:\n"
for tool in tools:
prompt += json.dumps(tool.function.dict(), indent=2) + "\n"
return prompt
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
"""Prepares the input payload for the Replicate API."""
input_data = {}
prompt_parts = []
system_prompt = ""
image_url = None
for message in request.messages:
if message.role == "system":
system_prompt += str(message.content) + "\n"
elif message.role == "user":
content = message.content
if isinstance(content, list):
for item in content:
if item.get("type") == "text":
prompt_parts.append(f"User: {item.get('text', '')}")
elif item.get("type") == "image_url":
image_url = item.get("image_url", {}).get("url")
else:
prompt_parts.append(f"User: {str(content)}")
elif message.role == "assistant":
prompt_parts.append(f"Assistant: {str(message.content)}")
if request.tools:
tool_prompt = format_tools_for_prompt(request.tools)
system_prompt += "\n" + tool_prompt
input_data["prompt"] = "\n".join(prompt_parts)
if system_prompt:
input_data["system_prompt"] = system_prompt
if image_url:
input_data["image"] = image_url
if request.temperature is not None:
input_data["temperature"] = request.temperature
if request.top_p is not None:
input_data["top_p"] = request.top_p
if request.max_tokens is not None:
input_data["max_new_tokens"] = request.max_tokens
return input_data
async def stream_replicate_with_polling(model_id: str, payload: dict):
"""
Creates a prediction and then polls the 'get' URL to stream back results.
This is a reliable alternative to Replicate's native SSE stream.
"""
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
async with httpx.AsyncClient(timeout=300) as client:
# 1. Start the prediction
try:
response = await client.post(url, headers=headers, json={"input": payload})
response.raise_for_status()
prediction = response.json()
get_url = prediction.get("urls", {}).get("get")
if not get_url:
error_detail = prediction.get("detail", "Failed to start prediction.")
yield f"data: {json.dumps({'error': error_detail})}\n\n"
return
except httpx.HTTPStatusError as e:
yield f"data: {json.dumps({'error': str(e.response.text)})}\n\n"
return
# 2. Poll the prediction 'get' URL for updates
previous_output = ""
status = ""
while status not in ["succeeded", "failed", "canceled"]:
await asyncio.sleep(POLLING_INTERVAL_SECONDS)
try:
poll_response = await client.get(get_url, headers=headers)
poll_response.raise_for_status()
prediction_update = poll_response.json()
status = prediction_update["status"]
if status == "failed":
error_detail = prediction_update.get("error", "Prediction failed.")
yield f"data: {json.dumps({'error': error_detail})}\n\n"
break
if "output" in prediction_update and prediction_update["output"] is not None:
current_output = "".join(prediction_update["output"])
new_chunk = current_output[len(previous_output):]
if new_chunk:
chunk = {
"id": prediction["id"],
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_id,
"choices": [{"index": 0, "delta": {"content": new_chunk}, "finish_reason": None}]
}
yield f"data: {json.dumps(chunk)}\n\n"
previous_output = current_output
except httpx.HTTPStatusError as e:
# Don't stop polling on temporary network errors
print(f"Warning: Polling failed with status {e.response.status_code}, retrying...")
except Exception as e:
yield f"data: {json.dumps({'error': f'Polling error: {str(e)}'})}\n\n"
break
# Send the final done signal
done_chunk = {
"id": prediction["id"],
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop" if status == "succeeded" else "error"}]
}
yield f"data: {json.dumps(done_chunk)}\n\n"
yield "data: [DONE]\n\n"
# --- API Endpoints ---
@app.get("/v1/models", response_model=ModelList)
async def list_models():
"""Lists the available models."""
model_cards = [ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()]
return ModelList(data=model_cards)
@app.post("/v1/chat/completions")
async def create_chat_completion(request: OpenAIChatCompletionRequest):
"""Creates a chat completion."""
model_key = request.model
if model_key not in SUPPORTED_MODELS:
raise HTTPException(status_code=404, detail=f"Model not found. Supported models: {list(SUPPORTED_MODELS.keys())}")
replicate_model_id = SUPPORTED_MODELS[model_key]
replicate_input = prepare_replicate_input(request)
if request.stream:
# Use the new reliable polling-based streamer
return EventSourceResponse(stream_replicate_with_polling(replicate_model_id, replicate_input))
# Synchronous request (no changes needed here)
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"}
async with httpx.AsyncClient(timeout=150) as client:
try:
response = await client.post(url, headers=headers, json={"input": replicate_input})
response.raise_for_status()
prediction = response.json()
output = prediction.get("output", "")
if isinstance(output, list):
output = "".join(output)
# Basic tool call detection
try:
tool_call_data = json.loads(output)
if tool_call_data.get("type") == "tool_call":
message_content, tool_calls = None, [{"id": f"call_{int(time.time())}", "type": "function", "function": {"name": tool_call_data["name"], "arguments": json.dumps(tool_call_data["arguments"])}}]
else:
message_content, tool_calls = output, None
except (json.JSONDecodeError, TypeError):
message_content, tool_calls = output, None
completion_response = {
"id": prediction["id"],
"object": "chat.completion",
"created": int(time.time()),
"model": model_key,
"choices": [{"index": 0, "message": {"role": "assistant", "content": message_content, "tool_calls": tool_calls}, "finish_reason": "stop"}],
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
}
return JSONResponse(content=completion_response)
except httpx.HTTPStatusError as e:
raise HTTPException(status_code=e.response.status_code, detail=e.response.text)