|
|
import os |
|
|
import httpx |
|
|
import json |
|
|
import time |
|
|
from fastapi import FastAPI, HTTPException |
|
|
from fastapi.responses import JSONResponse |
|
|
from pydantic import BaseModel, Field |
|
|
from typing import List, Dict, Any, Optional, Union, Literal |
|
|
from dotenv import load_dotenv |
|
|
from sse_starlette.sse import EventSourceResponse |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN") |
|
|
if not REPLICATE_API_TOKEN: |
|
|
raise ValueError("REPLICATE_API_TOKEN environment variable not set.") |
|
|
|
|
|
|
|
|
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="4.1.0 (Context Fixed)") |
|
|
|
|
|
|
|
|
class ModelCard(BaseModel): |
|
|
id: str; object: str = "model"; created: int = Field(default_factory=lambda: int(time.time())); owned_by: str = "replicate" |
|
|
class ModelList(BaseModel): |
|
|
object: str = "list"; data: List[ModelCard] = [] |
|
|
class ChatMessage(BaseModel): |
|
|
role: Literal["system", "user", "assistant", "tool"]; content: Union[str, List[Dict[str, Any]]] |
|
|
class OpenAIChatCompletionRequest(BaseModel): |
|
|
model: str; messages: List[ChatMessage]; temperature: Optional[float] = 0.7; top_p: Optional[float] = 1.0; max_tokens: Optional[int] = None; stream: Optional[bool] = False |
|
|
|
|
|
|
|
|
|
|
|
SUPPORTED_MODELS = { |
|
|
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct", |
|
|
"claude-4.5-haiku": "anthropic/claude-4.5-haiku" |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]: |
|
|
""" |
|
|
Formats the input for Replicate API, preserving the conversational context. |
|
|
""" |
|
|
payload = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
messages_for_payload = [] |
|
|
system_prompt = None |
|
|
for msg in request.messages: |
|
|
if msg.role == "system": |
|
|
|
|
|
system_prompt = str(msg.content) |
|
|
else: |
|
|
|
|
|
messages_for_payload.append(msg.dict()) |
|
|
|
|
|
|
|
|
payload["messages"] = messages_for_payload |
|
|
|
|
|
|
|
|
if system_prompt: |
|
|
payload["system_prompt"] = system_prompt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if request.max_tokens: payload["max_new_tokens"] = request.max_tokens |
|
|
if request.temperature: payload["temperature"] = request.temperature |
|
|
if request.top_p: payload["top_p"] = request.top_p |
|
|
|
|
|
return payload |
|
|
|
|
|
async def stream_replicate_sse(replicate_model_id: str, input_payload: dict): |
|
|
"""Handles the full streaming lifecycle using standard Replicate endpoints.""" |
|
|
|
|
|
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions" |
|
|
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"} |
|
|
|
|
|
async with httpx.AsyncClient(timeout=60.0) as client: |
|
|
try: |
|
|
|
|
|
response = await client.post(url, headers=headers, json={"input": input_payload, "stream": True}) |
|
|
response.raise_for_status() |
|
|
prediction = response.json() |
|
|
stream_url = prediction.get("urls", {}).get("stream") |
|
|
prediction_id = prediction.get("id", "stream-unknown") |
|
|
|
|
|
if not stream_url: |
|
|
yield json.dumps({"error": {"message": "Model did not return a stream URL."}}) |
|
|
return |
|
|
|
|
|
except httpx.HTTPStatusError as e: |
|
|
error_details = e.response.text |
|
|
try: |
|
|
|
|
|
error_json = e.response.json() |
|
|
error_details = error_json.get("detail", error_details) |
|
|
except json.JSONDecodeError: |
|
|
pass |
|
|
yield json.dumps({"error": {"message": f"Upstream Error: {error_details}", "type": "replicate_error"}}) |
|
|
return |
|
|
|
|
|
|
|
|
try: |
|
|
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}, timeout=None) as sse: |
|
|
current_event = None |
|
|
async for line in sse.aiter_lines(): |
|
|
if line.startswith("event:"): |
|
|
current_event = line[len("event:"):].strip() |
|
|
elif line.startswith("data:"): |
|
|
data = line[len("data:"):].strip() |
|
|
|
|
|
if current_event == "output": |
|
|
|
|
|
|
|
|
if data: |
|
|
chunk = { |
|
|
"id": prediction_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": replicate_model_id, |
|
|
"choices": [{"index": 0, "delta": {"content": data}, "finish_reason": None}] |
|
|
} |
|
|
yield json.dumps(chunk) |
|
|
|
|
|
elif current_event == "done": |
|
|
|
|
|
break |
|
|
except httpx.ReadTimeout: |
|
|
|
|
|
yield json.dumps({"error": {"message": "Stream timed out.", "type": "timeout_error"}}) |
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
final_chunk = { |
|
|
"id": prediction_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": replicate_model_id, |
|
|
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}] |
|
|
} |
|
|
yield json.dumps(final_chunk) |
|
|
|
|
|
yield "[DONE]" |
|
|
|
|
|
|
|
|
@app.get("/v1/models") |
|
|
async def list_models(): |
|
|
"""Lists the currently supported models.""" |
|
|
return ModelList(data=[ModelCard(id=k) for k in SUPPORTED_MODELS.keys()]) |
|
|
|
|
|
@app.post("/v1/chat/completions") |
|
|
async def create_chat_completion(request: OpenAIChatCompletionRequest): |
|
|
"""Handles chat completion requests, streaming or non-streaming.""" |
|
|
if request.model not in SUPPORTED_MODELS: |
|
|
raise HTTPException(status_code=404, detail=f"Model not found. Available models: {list(SUPPORTED_MODELS.keys())}") |
|
|
|
|
|
replicate_id = SUPPORTED_MODELS[request.model] |
|
|
replicate_input = prepare_replicate_input(request) |
|
|
|
|
|
if request.stream: |
|
|
|
|
|
return EventSourceResponse(stream_replicate_sse(replicate_id, replicate_input), media_type="text/event-stream") |
|
|
|
|
|
|
|
|
url = f"https://api.replicate.com/v1/models/{replicate_id}/predictions" |
|
|
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"} |
|
|
async with httpx.AsyncClient() as client: |
|
|
try: |
|
|
resp = await client.post(url, headers=headers, json={"input": replicate_input}, timeout=130.0) |
|
|
resp.raise_for_status() |
|
|
pred = resp.json() |
|
|
|
|
|
output = "".join(pred.get("output", [])) |
|
|
return { |
|
|
"id": pred.get("id"), |
|
|
"object": "chat.completion", |
|
|
"created": int(time.time()), |
|
|
"model": request.model, |
|
|
"choices": [{ |
|
|
"index": 0, |
|
|
"message": {"role": "assistant", "content": output}, |
|
|
"finish_reason": "stop" |
|
|
}], |
|
|
"usage": { |
|
|
"prompt_tokens": 0, |
|
|
"completion_tokens": 0, |
|
|
"total_tokens": 0 |
|
|
} |
|
|
} |
|
|
except httpx.HTTPStatusError as e: |
|
|
raise HTTPException(status_code=e.response.status_code, detail=f"Error from Replicate API: {e.response.text}") |