Update main.py
Browse files
main.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
import httpx
|
| 4 |
import json
|
|
@@ -17,7 +16,7 @@ if not REPLICATE_API_TOKEN:
|
|
| 17 |
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
|
| 18 |
|
| 19 |
# FastAPI Init
|
| 20 |
-
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="9.2.
|
| 21 |
|
| 22 |
# --- Pydantic Models ---
|
| 23 |
class ModelCard(BaseModel):
|
|
@@ -25,7 +24,7 @@ class ModelCard(BaseModel):
|
|
| 25 |
class ModelList(BaseModel):
|
| 26 |
object: str = "list"; data: List[ModelCard] = []
|
| 27 |
class ChatMessage(BaseModel):
|
| 28 |
-
role: Literal["system", "user", "assistant", "tool"]; content: Union[str, List[Dict[str, Any]]]; name: Optional[str] = None
|
| 29 |
class FunctionDefinition(BaseModel):
|
| 30 |
name: str; description: Optional[str] = None; parameters: Optional[Dict[str, Any]] = None
|
| 31 |
class ToolDefinition(BaseModel):
|
|
@@ -57,33 +56,30 @@ class ChatCompletionChunk(BaseModel):
|
|
| 57 |
# --- Supported Models ---
|
| 58 |
SUPPORTED_MODELS = {
|
| 59 |
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
|
| 60 |
-
"claude-
|
| 61 |
-
"claude-
|
| 62 |
"llava-13b": "yorickvp/llava-13b:e272157381e2a3bf12df3a8edd1f38d1dbd736bbb7437277c8b34175f8fce358"
|
| 63 |
}
|
| 64 |
|
| 65 |
# --- Core Logic ---
|
| 66 |
def format_messages_for_replicate(messages: List[ChatMessage], functions: Optional[List[FunctionDefinition]] = None) -> Dict[str, Any]:
|
| 67 |
-
"""Convert OpenAI messages to Replicate-compatible format with function calling support."""
|
| 68 |
prompt_parts = []
|
| 69 |
system_prompt = None
|
| 70 |
image_input = None
|
| 71 |
|
| 72 |
-
# Add functions to system prompt if provided
|
| 73 |
if functions:
|
| 74 |
-
functions_text = "
|
| 75 |
for func in functions:
|
| 76 |
-
functions_text += f"-
|
| 77 |
-
if func.
|
| 78 |
-
|
| 79 |
prompt_parts.append(functions_text)
|
| 80 |
|
| 81 |
for msg in messages:
|
| 82 |
if msg.role == "system":
|
| 83 |
system_prompt = str(msg.content)
|
| 84 |
elif msg.role == "assistant":
|
| 85 |
-
|
| 86 |
-
if hasattr(msg, 'tool_calls') and msg.tool_calls:
|
| 87 |
tool_calls_text = "\nTool calls:\n"
|
| 88 |
for tool_call in msg.tool_calls:
|
| 89 |
tool_calls_text += f"- {tool_call.function.name}({tool_call.function.arguments})\n"
|
|
@@ -91,7 +87,6 @@ def format_messages_for_replicate(messages: List[ChatMessage], functions: Option
|
|
| 91 |
else:
|
| 92 |
prompt_parts.append(f"Assistant: {msg.content}")
|
| 93 |
elif msg.role == "tool":
|
| 94 |
-
# Handle tool responses
|
| 95 |
prompt_parts.append(f"Tool Response: {msg.content}")
|
| 96 |
elif msg.role == "user":
|
| 97 |
user_text_content = ""
|
|
@@ -106,8 +101,7 @@ def format_messages_for_replicate(messages: List[ChatMessage], functions: Option
|
|
| 106 |
user_text_content = str(msg.content)
|
| 107 |
prompt_parts.append(f"User: {user_text_content}")
|
| 108 |
|
| 109 |
-
#
|
| 110 |
-
prompt_parts.append("Assistant:")
|
| 111 |
return {
|
| 112 |
"prompt": "\n\n".join(prompt_parts),
|
| 113 |
"system_prompt": system_prompt,
|
|
@@ -115,11 +109,8 @@ def format_messages_for_replicate(messages: List[ChatMessage], functions: Option
|
|
| 115 |
}
|
| 116 |
|
| 117 |
def parse_function_call(content: str) -> Optional[Dict[str, Any]]:
|
| 118 |
-
"""Parse function call from model response."""
|
| 119 |
try:
|
| 120 |
-
# Look for JSON-like function call patterns
|
| 121 |
if "function_call" in content or ("name" in content and "arguments" in content):
|
| 122 |
-
# Extract JSON part
|
| 123 |
start = content.find("{")
|
| 124 |
end = content.rfind("}") + 1
|
| 125 |
if start != -1 and end > start:
|
|
@@ -132,7 +123,6 @@ def parse_function_call(content: str) -> Optional[Dict[str, Any]]:
|
|
| 132 |
return None
|
| 133 |
|
| 134 |
async def stream_replicate_response(replicate_model_id: str, input_payload: dict, request_id: str):
|
| 135 |
-
"""Stream response with full OpenAI compatibility including tool calls."""
|
| 136 |
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
|
| 137 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 138 |
|
|
@@ -151,9 +141,7 @@ async def stream_replicate_response(replicate_model_id: str, input_payload: dict
|
|
| 151 |
return
|
| 152 |
except httpx.HTTPStatusError as e:
|
| 153 |
error_details = e.response.text
|
| 154 |
-
try:
|
| 155 |
-
error_json = e.response.json()
|
| 156 |
-
error_details = error_json.get("detail", error_details)
|
| 157 |
except json.JSONDecodeError: pass
|
| 158 |
yield f"data: {json.dumps({'error': {'message': f'Upstream Error: {error_details}', 'type': 'replicate_error'}})}\n\n"
|
| 159 |
return
|
|
@@ -172,80 +160,39 @@ async def stream_replicate_response(replicate_model_id: str, input_payload: dict
|
|
| 172 |
elif line.startswith("data:") and current_event == "output":
|
| 173 |
raw_data = line[5:].strip()
|
| 174 |
if not raw_data: continue
|
| 175 |
-
|
| 176 |
-
content_token = ""
|
| 177 |
try:
|
| 178 |
content_token = json.loads(raw_data)
|
| 179 |
except (json.JSONDecodeError, TypeError):
|
| 180 |
content_token = raw_data
|
| 181 |
|
| 182 |
-
#
|
|
|
|
|
|
|
| 183 |
if first_token:
|
| 184 |
content_token = content_token.lstrip()
|
| 185 |
-
|
|
|
|
|
|
|
| 186 |
|
| 187 |
accumulated_content += content_token
|
| 188 |
completion_tokens += 1
|
| 189 |
|
| 190 |
-
# Check for function calls in accumulated content
|
| 191 |
function_call = parse_function_call(accumulated_content)
|
| 192 |
if function_call:
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
id=f"call_{int(time.time())}",
|
| 196 |
-
function=FunctionCall(
|
| 197 |
-
name=function_call["name"],
|
| 198 |
-
arguments=function_call["arguments"]
|
| 199 |
-
)
|
| 200 |
-
)
|
| 201 |
-
chunk = ChatCompletionChunk(
|
| 202 |
-
id=request_id,
|
| 203 |
-
created=int(time.time()),
|
| 204 |
-
model=replicate_model_id,
|
| 205 |
-
choices=[ChoiceDelta(
|
| 206 |
-
index=0,
|
| 207 |
-
delta=DeltaMessage(tool_calls=[tool_call]),
|
| 208 |
-
finish_reason=None
|
| 209 |
-
)]
|
| 210 |
-
)
|
| 211 |
yield f"data: {chunk.json()}\n\n"
|
| 212 |
else:
|
| 213 |
-
#
|
| 214 |
-
|
| 215 |
-
id=request_id,
|
| 216 |
-
|
| 217 |
-
model=replicate_model_id,
|
| 218 |
-
choices=[ChoiceDelta(
|
| 219 |
-
index=0,
|
| 220 |
-
delta=DeltaMessage(content=content_token),
|
| 221 |
-
finish_reason=None
|
| 222 |
-
)]
|
| 223 |
-
)
|
| 224 |
-
yield f"data: {chunk.json()}\n\n"
|
| 225 |
|
| 226 |
elif current_event == "done":
|
| 227 |
-
# Send final usage chunk
|
| 228 |
end_time = time.time()
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
usage = Usage(
|
| 232 |
-
prompt_tokens=prompt_tokens,
|
| 233 |
-
completion_tokens=completion_tokens,
|
| 234 |
-
total_tokens=prompt_tokens + completion_tokens,
|
| 235 |
-
inference_time=round(inference_time, 3)
|
| 236 |
-
)
|
| 237 |
-
|
| 238 |
-
usage_chunk = ChatCompletionChunk(
|
| 239 |
-
id=request_id,
|
| 240 |
-
created=int(time.time()),
|
| 241 |
-
model=replicate_model_id,
|
| 242 |
-
choices=[ChoiceDelta(
|
| 243 |
-
index=0,
|
| 244 |
-
delta=DeltaMessage(),
|
| 245 |
-
finish_reason="stop"
|
| 246 |
-
)],
|
| 247 |
-
usage=usage
|
| 248 |
-
)
|
| 249 |
yield f"data: {usage_chunk.json()}\n\n"
|
| 250 |
break
|
| 251 |
|
|
@@ -265,7 +212,7 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 265 |
if request.model not in SUPPORTED_MODELS:
|
| 266 |
raise HTTPException(status_code=404, detail=f"Model not found. Available models: {list(SUPPORTED_MODELS.keys())}")
|
| 267 |
|
| 268 |
-
|
| 269 |
formatted = format_messages_for_replicate(request.messages, request.functions)
|
| 270 |
replicate_input = {
|
| 271 |
"prompt": formatted["prompt"],
|
|
@@ -273,21 +220,19 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 273 |
"temperature": request.temperature or 0.7,
|
| 274 |
"top_p": request.top_p or 1.0
|
| 275 |
}
|
| 276 |
-
if formatted["system_prompt"]:
|
| 277 |
-
|
| 278 |
-
if formatted["image"]:
|
| 279 |
-
replicate_input["image"] = formatted["image"]
|
| 280 |
|
| 281 |
request_id = f"chatcmpl-{int(time.time())}"
|
| 282 |
|
| 283 |
if request.stream:
|
| 284 |
return StreamingResponse(
|
| 285 |
-
stream_replicate_response(
|
| 286 |
media_type="text/event-stream"
|
| 287 |
)
|
| 288 |
|
| 289 |
# Non-streaming response
|
| 290 |
-
url = f"https://api.replicate.com/v1/models/{
|
| 291 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 292 |
start_time = time.time()
|
| 293 |
|
|
@@ -298,27 +243,21 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 298 |
pred = resp.json()
|
| 299 |
output = "".join(pred.get("output", []))
|
| 300 |
|
| 301 |
-
#
|
| 302 |
-
output = output.strip()
|
| 303 |
|
| 304 |
-
# Calculate timing and tokens
|
| 305 |
end_time = time.time()
|
| 306 |
-
inference_time = end_time - start_time
|
| 307 |
prompt_tokens = len(replicate_input.get("prompt", "")) // 4
|
| 308 |
completion_tokens = len(output) // 4
|
| 309 |
|
| 310 |
-
# Parse function call if present
|
| 311 |
tool_calls = None
|
|
|
|
|
|
|
|
|
|
| 312 |
function_call = parse_function_call(output)
|
| 313 |
if function_call:
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
name=function_call["name"],
|
| 318 |
-
arguments=function_call["arguments"]
|
| 319 |
-
)
|
| 320 |
-
)
|
| 321 |
-
tool_calls = [tool_call]
|
| 322 |
|
| 323 |
return ChatCompletion(
|
| 324 |
id=request_id,
|
|
@@ -326,18 +265,14 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 326 |
model=request.model,
|
| 327 |
choices=[Choice(
|
| 328 |
index=0,
|
| 329 |
-
message=ChatMessage(
|
| 330 |
-
|
| 331 |
-
content=output if not function_call else None,
|
| 332 |
-
tool_calls=tool_calls
|
| 333 |
-
),
|
| 334 |
-
finish_reason="tool_calls" if function_call else "stop"
|
| 335 |
)],
|
| 336 |
usage=Usage(
|
| 337 |
prompt_tokens=prompt_tokens,
|
| 338 |
completion_tokens=completion_tokens,
|
| 339 |
total_tokens=prompt_tokens + completion_tokens,
|
| 340 |
-
inference_time=round(
|
| 341 |
)
|
| 342 |
)
|
| 343 |
except httpx.HTTPStatusError as e:
|
|
@@ -347,14 +282,13 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|
| 347 |
|
| 348 |
@app.get("/")
|
| 349 |
async def root():
|
| 350 |
-
return {"message": "Replicate to OpenAI Compatibility Layer API", "version": "9.2.
|
| 351 |
|
| 352 |
-
# Performance optimization middleware
|
| 353 |
@app.middleware("http")
|
| 354 |
async def add_performance_headers(request, call_next):
|
| 355 |
start_time = time.time()
|
| 356 |
response = await call_next(request)
|
| 357 |
process_time = time.time() - start_time
|
| 358 |
response.headers["X-Process-Time"] = str(round(process_time, 3))
|
| 359 |
-
response.headers["X-API-Version"] = "9.2.
|
| 360 |
return response
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import httpx
|
| 3 |
import json
|
|
|
|
| 16 |
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
|
| 17 |
|
| 18 |
# FastAPI Init
|
| 19 |
+
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="9.2.2 (Spacing Fixed)")
|
| 20 |
|
| 21 |
# --- Pydantic Models ---
|
| 22 |
class ModelCard(BaseModel):
|
|
|
|
| 24 |
class ModelList(BaseModel):
|
| 25 |
object: str = "list"; data: List[ModelCard] = []
|
| 26 |
class ChatMessage(BaseModel):
|
| 27 |
+
role: Literal["system", "user", "assistant", "tool"]; content: Union[str, List[Dict[str, Any]]]; name: Optional[str] = None; tool_calls: Optional[List[Any]] = None
|
| 28 |
class FunctionDefinition(BaseModel):
|
| 29 |
name: str; description: Optional[str] = None; parameters: Optional[Dict[str, Any]] = None
|
| 30 |
class ToolDefinition(BaseModel):
|
|
|
|
| 56 |
# --- Supported Models ---
|
| 57 |
SUPPORTED_MODELS = {
|
| 58 |
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
|
| 59 |
+
"claude-3-haiku-20240307": "anthropic/claude-3-haiku-20240307", # Example of another common model
|
| 60 |
+
"claude-3-sonnet-20240229": "anthropic/claude-3-sonnet-20240229",
|
| 61 |
"llava-13b": "yorickvp/llava-13b:e272157381e2a3bf12df3a8edd1f38d1dbd736bbb7437277c8b34175f8fce358"
|
| 62 |
}
|
| 63 |
|
| 64 |
# --- Core Logic ---
|
| 65 |
def format_messages_for_replicate(messages: List[ChatMessage], functions: Optional[List[FunctionDefinition]] = None) -> Dict[str, Any]:
|
|
|
|
| 66 |
prompt_parts = []
|
| 67 |
system_prompt = None
|
| 68 |
image_input = None
|
| 69 |
|
|
|
|
| 70 |
if functions:
|
| 71 |
+
functions_text = "You have access to the following tools. Use them if required to answer the user's question.\n\n"
|
| 72 |
for func in functions:
|
| 73 |
+
functions_text += f"- Function: {func.name}\n"
|
| 74 |
+
if func.description: functions_text += f" Description: {func.description}\n"
|
| 75 |
+
if func.parameters: functions_text += f" Parameters: {json.dumps(func.parameters)}\n"
|
| 76 |
prompt_parts.append(functions_text)
|
| 77 |
|
| 78 |
for msg in messages:
|
| 79 |
if msg.role == "system":
|
| 80 |
system_prompt = str(msg.content)
|
| 81 |
elif msg.role == "assistant":
|
| 82 |
+
if msg.tool_calls:
|
|
|
|
| 83 |
tool_calls_text = "\nTool calls:\n"
|
| 84 |
for tool_call in msg.tool_calls:
|
| 85 |
tool_calls_text += f"- {tool_call.function.name}({tool_call.function.arguments})\n"
|
|
|
|
| 87 |
else:
|
| 88 |
prompt_parts.append(f"Assistant: {msg.content}")
|
| 89 |
elif msg.role == "tool":
|
|
|
|
| 90 |
prompt_parts.append(f"Tool Response: {msg.content}")
|
| 91 |
elif msg.role == "user":
|
| 92 |
user_text_content = ""
|
|
|
|
| 101 |
user_text_content = str(msg.content)
|
| 102 |
prompt_parts.append(f"User: {user_text_content}")
|
| 103 |
|
| 104 |
+
prompt_parts.append("Assistant:") # Let the model generate the space after this
|
|
|
|
| 105 |
return {
|
| 106 |
"prompt": "\n\n".join(prompt_parts),
|
| 107 |
"system_prompt": system_prompt,
|
|
|
|
| 109 |
}
|
| 110 |
|
| 111 |
def parse_function_call(content: str) -> Optional[Dict[str, Any]]:
|
|
|
|
| 112 |
try:
|
|
|
|
| 113 |
if "function_call" in content or ("name" in content and "arguments" in content):
|
|
|
|
| 114 |
start = content.find("{")
|
| 115 |
end = content.rfind("}") + 1
|
| 116 |
if start != -1 and end > start:
|
|
|
|
| 123 |
return None
|
| 124 |
|
| 125 |
async def stream_replicate_response(replicate_model_id: str, input_payload: dict, request_id: str):
|
|
|
|
| 126 |
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
|
| 127 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 128 |
|
|
|
|
| 141 |
return
|
| 142 |
except httpx.HTTPStatusError as e:
|
| 143 |
error_details = e.response.text
|
| 144 |
+
try: error_details = e.response.json().get("detail", error_details)
|
|
|
|
|
|
|
| 145 |
except json.JSONDecodeError: pass
|
| 146 |
yield f"data: {json.dumps({'error': {'message': f'Upstream Error: {error_details}', 'type': 'replicate_error'}})}\n\n"
|
| 147 |
return
|
|
|
|
| 160 |
elif line.startswith("data:") and current_event == "output":
|
| 161 |
raw_data = line[5:].strip()
|
| 162 |
if not raw_data: continue
|
| 163 |
+
|
|
|
|
| 164 |
try:
|
| 165 |
content_token = json.loads(raw_data)
|
| 166 |
except (json.JSONDecodeError, TypeError):
|
| 167 |
content_token = raw_data
|
| 168 |
|
| 169 |
+
# ### MAJOR FIX HERE ###
|
| 170 |
+
# This logic robustly handles the leading space by only stripping
|
| 171 |
+
# the very first non-empty token of the entire stream.
|
| 172 |
if first_token:
|
| 173 |
content_token = content_token.lstrip()
|
| 174 |
+
# Only flip the flag if we've actually processed a token with content.
|
| 175 |
+
if content_token:
|
| 176 |
+
first_token = False
|
| 177 |
|
| 178 |
accumulated_content += content_token
|
| 179 |
completion_tokens += 1
|
| 180 |
|
|
|
|
| 181 |
function_call = parse_function_call(accumulated_content)
|
| 182 |
if function_call:
|
| 183 |
+
tool_call = ToolCall(id=f"call_{int(time.time())}", function=FunctionCall(name=function_call["name"], arguments=function_call["arguments"]))
|
| 184 |
+
chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(tool_calls=[tool_call]), finish_reason=None)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
yield f"data: {chunk.json()}\n\n"
|
| 186 |
else:
|
| 187 |
+
# Only yield a chunk if there is content to send.
|
| 188 |
+
if content_token:
|
| 189 |
+
chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(content=content_token), finish_reason=None)])
|
| 190 |
+
yield f"data: {chunk.json()}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
elif current_event == "done":
|
|
|
|
| 193 |
end_time = time.time()
|
| 194 |
+
usage = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, inference_time=round(end_time - start_time, 3))
|
| 195 |
+
usage_chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(), finish_reason="stop")], usage=usage)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
yield f"data: {usage_chunk.json()}\n\n"
|
| 197 |
break
|
| 198 |
|
|
|
|
| 212 |
if request.model not in SUPPORTED_MODELS:
|
| 213 |
raise HTTPException(status_code=404, detail=f"Model not found. Available models: {list(SUPPORTED_MODELS.keys())}")
|
| 214 |
|
| 215 |
+
replicate_model_id = SUPPORTED_MODELS[request.model]
|
| 216 |
formatted = format_messages_for_replicate(request.messages, request.functions)
|
| 217 |
replicate_input = {
|
| 218 |
"prompt": formatted["prompt"],
|
|
|
|
| 220 |
"temperature": request.temperature or 0.7,
|
| 221 |
"top_p": request.top_p or 1.0
|
| 222 |
}
|
| 223 |
+
if formatted["system_prompt"]: replicate_input["system_prompt"] = formatted["system_prompt"]
|
| 224 |
+
if formatted["image"]: replicate_input["image"] = formatted["image"]
|
|
|
|
|
|
|
| 225 |
|
| 226 |
request_id = f"chatcmpl-{int(time.time())}"
|
| 227 |
|
| 228 |
if request.stream:
|
| 229 |
return StreamingResponse(
|
| 230 |
+
stream_replicate_response(replicate_model_id, replicate_input, request_id),
|
| 231 |
media_type="text/event-stream"
|
| 232 |
)
|
| 233 |
|
| 234 |
# Non-streaming response
|
| 235 |
+
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
|
| 236 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 237 |
start_time = time.time()
|
| 238 |
|
|
|
|
| 243 |
pred = resp.json()
|
| 244 |
output = "".join(pred.get("output", []))
|
| 245 |
|
| 246 |
+
output = output.strip() # Clean up any leading/trailing whitespace
|
|
|
|
| 247 |
|
|
|
|
| 248 |
end_time = time.time()
|
|
|
|
| 249 |
prompt_tokens = len(replicate_input.get("prompt", "")) // 4
|
| 250 |
completion_tokens = len(output) // 4
|
| 251 |
|
|
|
|
| 252 |
tool_calls = None
|
| 253 |
+
finish_reason = "stop"
|
| 254 |
+
message_content = output
|
| 255 |
+
|
| 256 |
function_call = parse_function_call(output)
|
| 257 |
if function_call:
|
| 258 |
+
tool_calls = [ToolCall(id=f"call_{int(time.time())}", function=FunctionCall(name=function_call["name"], arguments=function_call["arguments"]))]
|
| 259 |
+
finish_reason = "tool_calls"
|
| 260 |
+
message_content = None # OpenAI standard: content is null when tool_calls are present
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
return ChatCompletion(
|
| 263 |
id=request_id,
|
|
|
|
| 265 |
model=request.model,
|
| 266 |
choices=[Choice(
|
| 267 |
index=0,
|
| 268 |
+
message=ChatMessage(role="assistant", content=message_content, tool_calls=tool_calls),
|
| 269 |
+
finish_reason=finish_reason
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
)],
|
| 271 |
usage=Usage(
|
| 272 |
prompt_tokens=prompt_tokens,
|
| 273 |
completion_tokens=completion_tokens,
|
| 274 |
total_tokens=prompt_tokens + completion_tokens,
|
| 275 |
+
inference_time=round(end_time - start_time, 3)
|
| 276 |
)
|
| 277 |
)
|
| 278 |
except httpx.HTTPStatusError as e:
|
|
|
|
| 282 |
|
| 283 |
@app.get("/")
|
| 284 |
async def root():
|
| 285 |
+
return {"message": "Replicate to OpenAI Compatibility Layer API", "version": "9.2.2"}
|
| 286 |
|
|
|
|
| 287 |
@app.middleware("http")
|
| 288 |
async def add_performance_headers(request, call_next):
|
| 289 |
start_time = time.time()
|
| 290 |
response = await call_next(request)
|
| 291 |
process_time = time.time() - start_time
|
| 292 |
response.headers["X-Process-Time"] = str(round(process_time, 3))
|
| 293 |
+
response.headers["X-API-Version"] = "9.2.2"
|
| 294 |
return response
|