Update main.py
Browse files
main.py
CHANGED
|
@@ -23,7 +23,7 @@ POLLING_INTERVAL_SECONDS = 1 # How often to poll for updates
|
|
| 23 |
# --- FastAPI App Initialization ---
|
| 24 |
app = FastAPI(
|
| 25 |
title="Replicate to OpenAI Compatibility Layer",
|
| 26 |
-
version="1.
|
| 27 |
)
|
| 28 |
|
| 29 |
# --- Pydantic Models for OpenAI Compatibility ---
|
|
@@ -71,12 +71,9 @@ SUPPORTED_MODELS = {
|
|
| 71 |
# --- Helper Functions ---
|
| 72 |
|
| 73 |
def format_tools_for_prompt(tools: List[Tool]) -> str:
|
| 74 |
-
"""Converts OpenAI tools to a string for the system prompt."""
|
| 75 |
if not tools:
|
| 76 |
return ""
|
| 77 |
-
|
| 78 |
prompt = "You have access to the following tools. To use a tool, respond with a JSON object in the following format:\n"
|
| 79 |
-
# *** THIS IS THE CORRECTED LINE ***
|
| 80 |
prompt += '{"type": "tool_call", "name": "tool_name", "arguments": {"arg_name": "value"}}\n\n'
|
| 81 |
prompt += "Available tools:\n"
|
| 82 |
for tool in tools:
|
|
@@ -84,7 +81,6 @@ def format_tools_for_prompt(tools: List[Tool]) -> str:
|
|
| 84 |
return prompt
|
| 85 |
|
| 86 |
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
|
| 87 |
-
"""Prepares the input payload for the Replicate API."""
|
| 88 |
input_data = {}
|
| 89 |
prompt_parts = []
|
| 90 |
system_prompt = ""
|
|
@@ -127,13 +123,14 @@ def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, A
|
|
| 127 |
|
| 128 |
async def stream_replicate_with_polling(model_id: str, payload: dict):
|
| 129 |
"""
|
| 130 |
-
Creates a prediction and
|
|
|
|
| 131 |
"""
|
| 132 |
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
|
| 133 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 134 |
|
| 135 |
async with httpx.AsyncClient(timeout=300) as client:
|
| 136 |
-
|
| 137 |
try:
|
| 138 |
response = await client.post(url, headers=headers, json={"input": payload})
|
| 139 |
response.raise_for_status()
|
|
@@ -142,13 +139,14 @@ async def stream_replicate_with_polling(model_id: str, payload: dict):
|
|
| 142 |
|
| 143 |
if not get_url:
|
| 144 |
error_detail = prediction.get("detail", "Failed to start prediction.")
|
| 145 |
-
|
|
|
|
| 146 |
return
|
| 147 |
except httpx.HTTPStatusError as e:
|
| 148 |
-
|
|
|
|
| 149 |
return
|
| 150 |
|
| 151 |
-
# 2. Poll the prediction 'get' URL for updates
|
| 152 |
previous_output = ""
|
| 153 |
status = ""
|
| 154 |
while status not in ["succeeded", "failed", "canceled"]:
|
|
@@ -161,53 +159,44 @@ async def stream_replicate_with_polling(model_id: str, payload: dict):
|
|
| 161 |
|
| 162 |
if status == "failed":
|
| 163 |
error_detail = prediction_update.get("error", "Prediction failed.")
|
| 164 |
-
|
|
|
|
| 165 |
break
|
| 166 |
|
| 167 |
if "output" in prediction_update and prediction_update["output"] is not None:
|
| 168 |
current_output = "".join(prediction_update["output"])
|
| 169 |
-
|
| 170 |
|
| 171 |
-
if
|
| 172 |
chunk = {
|
| 173 |
-
"id": prediction["id"],
|
| 174 |
-
"
|
| 175 |
-
"created": int(time.time()),
|
| 176 |
-
"model": model_id,
|
| 177 |
-
"choices": [{"index": 0, "delta": {"content": new_chunk}, "finish_reason": None}]
|
| 178 |
}
|
| 179 |
-
yield
|
| 180 |
previous_output = current_output
|
| 181 |
|
| 182 |
-
except httpx.HTTPStatusError as e:
|
| 183 |
-
print(f"Warning: Polling failed with status {e.response.status_code}, retrying...")
|
| 184 |
except Exception as e:
|
| 185 |
-
|
|
|
|
| 186 |
break
|
| 187 |
|
| 188 |
# Send the final done signal
|
| 189 |
done_chunk = {
|
| 190 |
-
"id": prediction["id"],
|
| 191 |
-
"object": "chat.completion.chunk",
|
| 192 |
-
"created": int(time.time()),
|
| 193 |
-
"model": model_id,
|
| 194 |
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop" if status == "succeeded" else "error"}]
|
| 195 |
}
|
| 196 |
-
yield
|
| 197 |
-
yield "
|
| 198 |
|
| 199 |
|
| 200 |
# --- API Endpoints ---
|
| 201 |
|
| 202 |
@app.get("/v1/models", response_model=ModelList)
|
| 203 |
async def list_models():
|
| 204 |
-
|
| 205 |
-
model_cards = [ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()]
|
| 206 |
-
return ModelList(data=model_cards)
|
| 207 |
|
| 208 |
@app.post("/v1/chat/completions")
|
| 209 |
async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
| 210 |
-
"""Creates a chat completion."""
|
| 211 |
model_key = request.model
|
| 212 |
if model_key not in SUPPORTED_MODELS:
|
| 213 |
raise HTTPException(status_code=404, detail=f"Model not found. Supported models: {list(SUPPORTED_MODELS.keys())}")
|
|
@@ -228,11 +217,8 @@ async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
|
| 228 |
response.raise_for_status()
|
| 229 |
prediction = response.json()
|
| 230 |
|
| 231 |
-
output = prediction.get("output",
|
| 232 |
-
|
| 233 |
-
output = "".join(output)
|
| 234 |
-
|
| 235 |
-
# Basic tool call detection
|
| 236 |
try:
|
| 237 |
tool_call_data = json.loads(output)
|
| 238 |
if tool_call_data.get("type") == "tool_call":
|
|
@@ -242,15 +228,11 @@ async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
|
| 242 |
except (json.JSONDecodeError, TypeError):
|
| 243 |
message_content, tool_calls = output, None
|
| 244 |
|
| 245 |
-
|
| 246 |
-
"id": prediction["id"],
|
| 247 |
-
"object": "chat.completion",
|
| 248 |
-
"created": int(time.time()),
|
| 249 |
-
"model": model_key,
|
| 250 |
"choices": [{"index": 0, "message": {"role": "assistant", "content": message_content, "tool_calls": tool_calls}, "finish_reason": "stop"}],
|
| 251 |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
| 252 |
-
}
|
| 253 |
-
return JSONResponse(content=completion_response)
|
| 254 |
|
| 255 |
except httpx.HTTPStatusError as e:
|
| 256 |
raise HTTPException(status_code=e.response.status_code, detail=e.response.text)
|
|
|
|
| 23 |
# --- FastAPI App Initialization ---
|
| 24 |
app = FastAPI(
|
| 25 |
title="Replicate to OpenAI Compatibility Layer",
|
| 26 |
+
version="1.2.0 (Streaming Fixed)",
|
| 27 |
)
|
| 28 |
|
| 29 |
# --- Pydantic Models for OpenAI Compatibility ---
|
|
|
|
| 71 |
# --- Helper Functions ---
|
| 72 |
|
| 73 |
def format_tools_for_prompt(tools: List[Tool]) -> str:
|
|
|
|
| 74 |
if not tools:
|
| 75 |
return ""
|
|
|
|
| 76 |
prompt = "You have access to the following tools. To use a tool, respond with a JSON object in the following format:\n"
|
|
|
|
| 77 |
prompt += '{"type": "tool_call", "name": "tool_name", "arguments": {"arg_name": "value"}}\n\n'
|
| 78 |
prompt += "Available tools:\n"
|
| 79 |
for tool in tools:
|
|
|
|
| 81 |
return prompt
|
| 82 |
|
| 83 |
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
|
|
|
|
| 84 |
input_data = {}
|
| 85 |
prompt_parts = []
|
| 86 |
system_prompt = ""
|
|
|
|
| 123 |
|
| 124 |
async def stream_replicate_with_polling(model_id: str, payload: dict):
|
| 125 |
"""
|
| 126 |
+
Creates a prediction and polls the 'get' URL to stream back results.
|
| 127 |
+
Yields raw JSON strings for EventSourceResponse to handle.
|
| 128 |
"""
|
| 129 |
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
|
| 130 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 131 |
|
| 132 |
async with httpx.AsyncClient(timeout=300) as client:
|
| 133 |
+
prediction = None
|
| 134 |
try:
|
| 135 |
response = await client.post(url, headers=headers, json={"input": payload})
|
| 136 |
response.raise_for_status()
|
|
|
|
| 139 |
|
| 140 |
if not get_url:
|
| 141 |
error_detail = prediction.get("detail", "Failed to start prediction.")
|
| 142 |
+
error_chunk = {"error": {"message": error_detail, "type": "api_error", "code": 500}}
|
| 143 |
+
yield json.dumps(error_chunk)
|
| 144 |
return
|
| 145 |
except httpx.HTTPStatusError as e:
|
| 146 |
+
error_chunk = {"error": {"message": e.response.text, "type": "api_error", "code": e.response.status_code}}
|
| 147 |
+
yield json.dumps(error_chunk)
|
| 148 |
return
|
| 149 |
|
|
|
|
| 150 |
previous_output = ""
|
| 151 |
status = ""
|
| 152 |
while status not in ["succeeded", "failed", "canceled"]:
|
|
|
|
| 159 |
|
| 160 |
if status == "failed":
|
| 161 |
error_detail = prediction_update.get("error", "Prediction failed.")
|
| 162 |
+
chunk = {"choices": [{"delta": {"content": f"\n\n[ERROR: {error_detail}]"}, "finish_reason": "error"}]}
|
| 163 |
+
yield json.dumps(chunk)
|
| 164 |
break
|
| 165 |
|
| 166 |
if "output" in prediction_update and prediction_update["output"] is not None:
|
| 167 |
current_output = "".join(prediction_update["output"])
|
| 168 |
+
new_chunk_text = current_output[len(previous_output):]
|
| 169 |
|
| 170 |
+
if new_chunk_text:
|
| 171 |
chunk = {
|
| 172 |
+
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
| 173 |
+
"choices": [{"index": 0, "delta": {"content": new_chunk_text}, "finish_reason": None}]
|
|
|
|
|
|
|
|
|
|
| 174 |
}
|
| 175 |
+
yield json.dumps(chunk) # *** FIX: Yield raw JSON string
|
| 176 |
previous_output = current_output
|
| 177 |
|
|
|
|
|
|
|
| 178 |
except Exception as e:
|
| 179 |
+
error_chunk = {"error": {"message": f"Polling error: {str(e)}", "type": "internal_error", "code": 500}}
|
| 180 |
+
yield json.dumps(error_chunk)
|
| 181 |
break
|
| 182 |
|
| 183 |
# Send the final done signal
|
| 184 |
done_chunk = {
|
| 185 |
+
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
|
|
|
|
|
|
|
|
|
| 186 |
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop" if status == "succeeded" else "error"}]
|
| 187 |
}
|
| 188 |
+
yield json.dumps(done_chunk) # *** FIX: Yield raw JSON string
|
| 189 |
+
yield "[DONE]" # *** FIX: Yield the special [DONE] marker
|
| 190 |
|
| 191 |
|
| 192 |
# --- API Endpoints ---
|
| 193 |
|
| 194 |
@app.get("/v1/models", response_model=ModelList)
|
| 195 |
async def list_models():
|
| 196 |
+
return ModelList(data=[ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()])
|
|
|
|
|
|
|
| 197 |
|
| 198 |
@app.post("/v1/chat/completions")
|
| 199 |
async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
|
|
|
| 200 |
model_key = request.model
|
| 201 |
if model_key not in SUPPORTED_MODELS:
|
| 202 |
raise HTTPException(status_code=404, detail=f"Model not found. Supported models: {list(SUPPORTED_MODELS.keys())}")
|
|
|
|
| 217 |
response.raise_for_status()
|
| 218 |
prediction = response.json()
|
| 219 |
|
| 220 |
+
output = "".join(prediction.get("output", []))
|
| 221 |
+
|
|
|
|
|
|
|
|
|
|
| 222 |
try:
|
| 223 |
tool_call_data = json.loads(output)
|
| 224 |
if tool_call_data.get("type") == "tool_call":
|
|
|
|
| 228 |
except (json.JSONDecodeError, TypeError):
|
| 229 |
message_content, tool_calls = output, None
|
| 230 |
|
| 231 |
+
return JSONResponse(content={
|
| 232 |
+
"id": prediction["id"], "object": "chat.completion", "created": int(time.time()), "model": model_key,
|
|
|
|
|
|
|
|
|
|
| 233 |
"choices": [{"index": 0, "message": {"role": "assistant", "content": message_content, "tool_calls": tool_calls}, "finish_reason": "stop"}],
|
| 234 |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
| 235 |
+
})
|
|
|
|
| 236 |
|
| 237 |
except httpx.HTTPStatusError as e:
|
| 238 |
raise HTTPException(status_code=e.response.status_code, detail=e.response.text)
|