Update main.py
Browse files
main.py
CHANGED
|
@@ -3,7 +3,7 @@ import httpx
|
|
| 3 |
import json
|
| 4 |
import time
|
| 5 |
import asyncio
|
| 6 |
-
from fastapi import FastAPI,
|
| 7 |
from fastapi.responses import JSONResponse
|
| 8 |
from pydantic import BaseModel, Field
|
| 9 |
from typing import List, Dict, Any, Optional, Union, Literal
|
|
@@ -18,15 +18,10 @@ REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
|
|
| 18 |
if not REPLICATE_API_TOKEN:
|
| 19 |
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
|
| 20 |
|
| 21 |
-
# *** THE FIX IS HERE ***
|
| 22 |
-
# Reduced from 1.0 to 0.05 for smoother, more frequent streaming updates.
|
| 23 |
-
# This makes the polling fast enough to appear like real-time token streaming.
|
| 24 |
-
POLLING_INTERVAL_SECONDS = 0.05
|
| 25 |
-
|
| 26 |
# --- FastAPI App Initialization ---
|
| 27 |
app = FastAPI(
|
| 28 |
title="Replicate to OpenAI Compatibility Layer",
|
| 29 |
-
version="
|
| 30 |
)
|
| 31 |
|
| 32 |
# --- Pydantic Models for OpenAI Compatibility ---
|
|
@@ -73,122 +68,92 @@ SUPPORTED_MODELS = {
|
|
| 73 |
|
| 74 |
# --- Helper Functions ---
|
| 75 |
|
| 76 |
-
def format_tools_for_prompt(tools: List[Tool]) -> str:
|
| 77 |
-
if not tools:
|
| 78 |
-
return ""
|
| 79 |
-
prompt = "You have access to the following tools. To use a tool, respond with a JSON object in the following format:\n"
|
| 80 |
-
prompt += '{"type": "tool_call", "name": "tool_name", "arguments": {"arg_name": "value"}}\n\n'
|
| 81 |
-
prompt += "Available tools:\n"
|
| 82 |
-
for tool in tools:
|
| 83 |
-
prompt += json.dumps(tool.function.dict(), indent=2) + "\n"
|
| 84 |
-
return prompt
|
| 85 |
-
|
| 86 |
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
for
|
| 93 |
-
if message.role == "system":
|
| 94 |
-
system_prompt += str(message.content) + "\n"
|
| 95 |
-
elif message.role == "user":
|
| 96 |
-
content = message.content
|
| 97 |
-
if isinstance(content, list):
|
| 98 |
-
for item in content:
|
| 99 |
-
if item.get("type") == "text":
|
| 100 |
-
prompt_parts.append(f"User: {item.get('text', '')}")
|
| 101 |
-
elif item.get("type") == "image_url":
|
| 102 |
-
image_url = item.get("image_url", {}).get("url")
|
| 103 |
-
else:
|
| 104 |
-
prompt_parts.append(f"User: {str(content)}")
|
| 105 |
-
elif message.role == "assistant":
|
| 106 |
-
prompt_parts.append(f"Assistant: {str(message.content)}")
|
| 107 |
-
|
| 108 |
-
if request.tools:
|
| 109 |
-
tool_prompt = format_tools_for_prompt(request.tools)
|
| 110 |
-
system_prompt += "\n" + tool_prompt
|
| 111 |
-
|
| 112 |
-
# Add final turn for the assistant to respond
|
| 113 |
-
prompt_parts.append("Assistant:")
|
| 114 |
-
|
| 115 |
-
input_data["prompt"] = "\n".join(prompt_parts)
|
| 116 |
-
if system_prompt:
|
| 117 |
-
input_data["system_prompt"] = system_prompt
|
| 118 |
-
if image_url:
|
| 119 |
-
input_data["image"] = image_url
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
if request.temperature is not None:
|
| 122 |
-
|
| 123 |
if request.top_p is not None:
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
async def
|
| 131 |
"""
|
| 132 |
-
|
| 133 |
-
Yields raw JSON strings for EventSourceResponse to handle.
|
| 134 |
"""
|
| 135 |
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
|
| 136 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 137 |
|
| 138 |
async with httpx.AsyncClient(timeout=300) as client:
|
| 139 |
-
prediction
|
| 140 |
try:
|
| 141 |
-
|
|
|
|
| 142 |
response.raise_for_status()
|
| 143 |
prediction = response.json()
|
| 144 |
-
|
| 145 |
|
| 146 |
-
if not
|
| 147 |
-
error_detail = prediction.get("detail", "Failed to
|
| 148 |
-
|
| 149 |
-
yield json.dumps(error_chunk)
|
| 150 |
return
|
| 151 |
except httpx.HTTPStatusError as e:
|
| 152 |
-
|
| 153 |
-
yield json.dumps(error_chunk)
|
| 154 |
return
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
| 179 |
-
"choices": [{"index": 0, "delta": {"content": new_chunk_text}, "finish_reason": None}]
|
| 180 |
-
}
|
| 181 |
-
yield json.dumps(chunk)
|
| 182 |
-
previous_output = current_output
|
| 183 |
-
|
| 184 |
-
except Exception as e:
|
| 185 |
-
error_chunk = {"error": {"message": f"Polling error: {str(e)}", "type": "internal_error", "code": 500}}
|
| 186 |
-
yield json.dumps(error_chunk)
|
| 187 |
-
break
|
| 188 |
-
|
| 189 |
done_chunk = {
|
| 190 |
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
| 191 |
-
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"
|
| 192 |
}
|
| 193 |
yield json.dumps(done_chunk)
|
| 194 |
yield "[DONE]"
|
|
@@ -210,7 +175,7 @@ async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
|
| 210 |
replicate_input = prepare_replicate_input(request)
|
| 211 |
|
| 212 |
if request.stream:
|
| 213 |
-
return EventSourceResponse(
|
| 214 |
|
| 215 |
# Synchronous request
|
| 216 |
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
|
|
@@ -224,18 +189,9 @@ async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
|
| 224 |
|
| 225 |
output = "".join(prediction.get("output", []))
|
| 226 |
|
| 227 |
-
try:
|
| 228 |
-
tool_call_data = json.loads(output)
|
| 229 |
-
if tool_call_data.get("type") == "tool_call":
|
| 230 |
-
message_content, tool_calls = None, [{"id": f"call_{int(time.time())}", "type": "function", "function": {"name": tool_call_data["name"], "arguments": json.dumps(tool_call_data["arguments"])}}]
|
| 231 |
-
else:
|
| 232 |
-
message_content, tool_calls = output, None
|
| 233 |
-
except (json.JSONDecodeError, TypeError):
|
| 234 |
-
message_content, tool_calls = output, None
|
| 235 |
-
|
| 236 |
return JSONResponse(content={
|
| 237 |
"id": prediction["id"], "object": "chat.completion", "created": int(time.time()), "model": model_key,
|
| 238 |
-
"choices": [{"index": 0, "message": {"role": "assistant", "content":
|
| 239 |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
| 240 |
})
|
| 241 |
|
|
|
|
| 3 |
import json
|
| 4 |
import time
|
| 5 |
import asyncio
|
| 6 |
+
from fastapi import FastAPI, HTTPException
|
| 7 |
from fastapi.responses import JSONResponse
|
| 8 |
from pydantic import BaseModel, Field
|
| 9 |
from typing import List, Dict, Any, Optional, Union, Literal
|
|
|
|
| 18 |
if not REPLICATE_API_TOKEN:
|
| 19 |
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# --- FastAPI App Initialization ---
|
| 22 |
app = FastAPI(
|
| 23 |
title="Replicate to OpenAI Compatibility Layer",
|
| 24 |
+
version="2.0.0 (Native Streaming & Context Fixed)",
|
| 25 |
)
|
| 26 |
|
| 27 |
# --- Pydantic Models for OpenAI Compatibility ---
|
|
|
|
| 68 |
|
| 69 |
# --- Helper Functions ---
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
|
| 72 |
+
"""
|
| 73 |
+
Prepares the input payload for Replicate's chat models.
|
| 74 |
+
This now correctly passes the messages array for context.
|
| 75 |
+
"""
|
| 76 |
+
# Convert Pydantic message objects to a list of dictionaries
|
| 77 |
+
messages_for_replicate = [msg.dict() for msg in request.messages]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
payload = {
|
| 80 |
+
"messages": messages_for_replicate
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
# Add other compatible parameters
|
| 84 |
+
if request.max_tokens is not None:
|
| 85 |
+
payload["max_new_tokens"] = request.max_tokens
|
| 86 |
if request.temperature is not None:
|
| 87 |
+
payload["temperature"] = request.temperature
|
| 88 |
if request.top_p is not None:
|
| 89 |
+
payload["top_p"] = request.top_p
|
| 90 |
+
|
| 91 |
+
# Vision support: Find image URL in the last user message if present
|
| 92 |
+
last_user_message = next((m for m in reversed(request.messages) if m.role == 'user'), None)
|
| 93 |
+
if last_user_message and isinstance(last_user_message.content, list):
|
| 94 |
+
for item in last_user_message.content:
|
| 95 |
+
if item.get("type") == "image_url":
|
| 96 |
+
payload["image"] = item.get("image_url", {}).get("url")
|
| 97 |
+
# Reformat messages to be a simple prompt string for vision models if needed,
|
| 98 |
+
# as some might not support the `messages` format with images.
|
| 99 |
+
# For Claude Haiku, a prompt string is more reliable with images.
|
| 100 |
+
if "claude" in request.model:
|
| 101 |
+
text_prompts = [item.get('text', '') for item in last_user_message.content if item.get('type') == 'text']
|
| 102 |
+
payload["prompt"] = " ".join(text_prompts)
|
| 103 |
+
del payload["messages"]
|
| 104 |
+
break
|
| 105 |
+
|
| 106 |
+
return payload
|
| 107 |
|
| 108 |
+
async def stream_replicate_native_sse(model_id: str, payload: dict):
|
| 109 |
"""
|
| 110 |
+
Connects to Replicate's native SSE stream for true token-by-token streaming.
|
|
|
|
| 111 |
"""
|
| 112 |
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
|
| 113 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 114 |
|
| 115 |
async with httpx.AsyncClient(timeout=300) as client:
|
| 116 |
+
# 1. Create the prediction to get the stream URL
|
| 117 |
try:
|
| 118 |
+
# Add stream=True to the outer payload for Replicate
|
| 119 |
+
response = await client.post(url, headers=headers, json={"input": payload, "stream": True})
|
| 120 |
response.raise_for_status()
|
| 121 |
prediction = response.json()
|
| 122 |
+
stream_url = prediction.get("urls", {}).get("stream")
|
| 123 |
|
| 124 |
+
if not stream_url:
|
| 125 |
+
error_detail = prediction.get("detail", "Failed to get stream URL.")
|
| 126 |
+
yield json.dumps({"error": {"message": error_detail}})
|
|
|
|
| 127 |
return
|
| 128 |
except httpx.HTTPStatusError as e:
|
| 129 |
+
yield json.dumps({"error": {"message": e.response.text}})
|
|
|
|
| 130 |
return
|
| 131 |
|
| 132 |
+
# 2. Connect to the SSE stream and yield OpenAI-compatible chunks
|
| 133 |
+
try:
|
| 134 |
+
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}) as sse:
|
| 135 |
+
sse.raise_for_status()
|
| 136 |
+
current_event = ""
|
| 137 |
+
async for line in sse.aiter_lines():
|
| 138 |
+
if line.startswith("event:"):
|
| 139 |
+
current_event = line[len("event:"):].strip()
|
| 140 |
+
elif line.startswith("data:"):
|
| 141 |
+
data = line[len("data:"):].strip()
|
| 142 |
+
if current_event == "output":
|
| 143 |
+
chunk = {
|
| 144 |
+
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
| 145 |
+
"choices": [{"index": 0, "delta": {"content": json.loads(data)}, "finish_reason": None}]
|
| 146 |
+
}
|
| 147 |
+
yield json.dumps(chunk)
|
| 148 |
+
elif current_event == "done":
|
| 149 |
+
break # Exit loop when done event is received
|
| 150 |
+
except Exception as e:
|
| 151 |
+
yield json.dumps({"error": {"message": f"Streaming error: {str(e)}"}})
|
| 152 |
+
|
| 153 |
+
# 3. Send the final DONE chunk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
done_chunk = {
|
| 155 |
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
| 156 |
+
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]
|
| 157 |
}
|
| 158 |
yield json.dumps(done_chunk)
|
| 159 |
yield "[DONE]"
|
|
|
|
| 175 |
replicate_input = prepare_replicate_input(request)
|
| 176 |
|
| 177 |
if request.stream:
|
| 178 |
+
return EventSourceResponse(stream_replicate_native_sse(replicate_model_id, replicate_input))
|
| 179 |
|
| 180 |
# Synchronous request
|
| 181 |
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
|
|
|
|
| 189 |
|
| 190 |
output = "".join(prediction.get("output", []))
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
return JSONResponse(content={
|
| 193 |
"id": prediction["id"], "object": "chat.completion", "created": int(time.time()), "model": model_key,
|
| 194 |
+
"choices": [{"index": 0, "message": {"role": "assistant", "content": output}, "finish_reason": "stop"}],
|
| 195 |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
| 196 |
})
|
| 197 |
|