Update main.py
Browse files
main.py
CHANGED
|
@@ -1,8 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
| 3 |
import json
|
| 4 |
import logging
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
from fastapi import FastAPI
|
| 8 |
from fastapi.responses import StreamingResponse
|
|
@@ -21,47 +43,55 @@ LLM_API_KEY = os.getenv("LLM_API_KEY")
|
|
| 21 |
if not LLM_API_KEY:
|
| 22 |
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
|
| 23 |
else:
|
| 24 |
-
logger.info(
|
| 25 |
|
| 26 |
-
#
|
| 27 |
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
|
| 28 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 29 |
LLM_MODEL = "gpt-4.1-mini"
|
| 30 |
MAX_CONTEXT_CHAR_LENGTH = 120000
|
| 31 |
|
| 32 |
-
# Headers
|
| 33 |
SNAPZION_HEADERS = { 'Content-Type': 'application/json', 'User-Agent': 'AI-Deep-Research-Agent/1.0' }
|
| 34 |
SCRAPING_HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36' }
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
LLM_HEADERS = {
|
| 38 |
-
"Authorization": f"Bearer {LLM_API_KEY}",
|
| 39 |
-
"Content-Type": "application/json",
|
| 40 |
-
"Accept": "application/json", # Explicitly request a JSON response
|
| 41 |
-
"User-Agent": "AI-Deep-Research-Client/2.3"
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
# --- Pydantic Models ---
|
| 45 |
class DeepResearchRequest(BaseModel):
|
| 46 |
query: str
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# --- FastAPI App ---
|
| 49 |
app = FastAPI(
|
| 50 |
title="AI Deep Research API",
|
| 51 |
description="Provides streaming deep research completions.",
|
| 52 |
-
version="2.
|
| 53 |
)
|
| 54 |
|
| 55 |
# --- Core Service Functions (Unchanged) ---
|
| 56 |
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> list:
|
| 57 |
try:
|
| 58 |
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
|
| 59 |
-
response.raise_for_status()
|
| 60 |
-
data = await response.json()
|
| 61 |
return data.get("organic_results", [])
|
| 62 |
except Exception as e:
|
| 63 |
-
logger.error(f"Snapzion search failed for query '{query}': {e}")
|
| 64 |
-
return []
|
| 65 |
|
| 66 |
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
| 67 |
if url.lower().endswith('.pdf'): return "Error: PDF content cannot be scraped."
|
|
@@ -70,74 +100,48 @@ async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
|
| 70 |
if response.status != 200: return f"Error: HTTP status {response.status}"
|
| 71 |
html = await response.text()
|
| 72 |
soup = BeautifulSoup(html, "html.parser")
|
| 73 |
-
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
|
| 74 |
-
tag.decompose()
|
| 75 |
return " ".join(soup.stripped_strings)
|
| 76 |
except Exception as e:
|
| 77 |
-
logger.warning(f"Scraping failed for {url}: {e}")
|
| 78 |
-
return f"Error: {e}"
|
| 79 |
|
| 80 |
async def search_and_scrape(session: aiohttp.ClientSession, query: str) -> tuple[str, list]:
|
| 81 |
-
search_results = await call_snapzion_search(session, query)
|
| 82 |
-
sources = search_results[:4]
|
| 83 |
if not sources: return "", []
|
| 84 |
scrape_tasks = [scrape_url(session, source["link"]) for source in sources]
|
| 85 |
scraped_contents = await asyncio.gather(*scrape_tasks)
|
| 86 |
-
context = "\n\n".join(
|
| 87 |
-
f"Source Details: Title '{sources[i]['title']}', URL '{sources[i]['link']}'\nContent:\n{content}"
|
| 88 |
-
for i, content in enumerate(scraped_contents) if not content.startswith("Error:")
|
| 89 |
-
)
|
| 90 |
return context, sources
|
| 91 |
|
| 92 |
# --- Streaming Deep Research Logic ---
|
| 93 |
-
|
| 94 |
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
| 95 |
-
|
| 96 |
-
def format_sse(data: dict) -> str:
|
| 97 |
-
return f"data: {json.dumps(data)}\n\n"
|
| 98 |
-
|
| 99 |
-
raw_response_text_for_debugging = "" # Variable to hold response text for logging
|
| 100 |
try:
|
| 101 |
async with aiohttp.ClientSession() as session:
|
| 102 |
# Step 1: Generate Sub-Questions
|
| 103 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
| 104 |
|
|
|
|
| 105 |
sub_question_prompt = {
|
| 106 |
-
"model": LLM_MODEL,
|
| 107 |
-
"messages": [{ "role": "user", "content": f"You are a research planner. For the topic '{query}', create a JSON array of 3-4 key sub-questions for a research report. Respond ONLY with the JSON array. Example: [\"Question 1?\", \"Question 2?\"]" }]
|
| 108 |
}
|
| 109 |
-
|
| 110 |
-
# ***** CHANGE 3: The most critical fix. Heavily reinforced error handling. *****
|
| 111 |
try:
|
| 112 |
-
logger.info(f"Sending request to LLM for planning. Model: {LLM_MODEL}, URL: {LLM_API_URL}")
|
| 113 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=sub_question_prompt, timeout=20) as response:
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
raise Exception(f"LLM provider returned non-200 status: {response.status}")
|
| 119 |
-
|
| 120 |
-
if not raw_response_text_for_debugging:
|
| 121 |
-
raise Exception("LLM provider returned an empty response body.")
|
| 122 |
-
|
| 123 |
-
result = json.loads(raw_response_text_for_debugging)
|
| 124 |
-
llm_content = result.get('choices', [{}])[0].get('message', {}).get('content', '')
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
raise
|
| 129 |
-
|
| 130 |
-
sub_questions = json.loads(llm_content)
|
| 131 |
-
|
| 132 |
except Exception as e:
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"})
|
| 136 |
-
return
|
| 137 |
|
| 138 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 139 |
|
| 140 |
-
#
|
| 141 |
research_tasks = [search_and_scrape(session, sq) for sq in sub_questions]
|
| 142 |
yield format_sse({"event": "status", "data": f"Starting research on {len(sub_questions)} topics..."})
|
| 143 |
|
|
@@ -148,22 +152,18 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 148 |
if context: consolidated_context += context + "\n\n---\n\n"
|
| 149 |
if sources: all_sources.extend(sources)
|
| 150 |
|
| 151 |
-
yield format_sse({"event": "status", "data": "Consolidating research..."})
|
| 152 |
-
if len(consolidated_context) > MAX_CONTEXT_CHAR_LENGTH:
|
| 153 |
-
consolidated_context = consolidated_context[:MAX_CONTEXT_CHAR_LENGTH]
|
| 154 |
-
|
| 155 |
if not consolidated_context.strip():
|
| 156 |
-
yield format_sse({"event": "error", "data": "Failed to gather any research context."})
|
| 157 |
-
return
|
| 158 |
|
| 159 |
yield format_sse({"event": "status", "data": "Generating final report..."})
|
|
|
|
|
|
|
|
|
|
| 160 |
final_report_prompt = f'Synthesize the provided context into a comprehensive report on "{query}". Use markdown. Context:\n{consolidated_context}'
|
| 161 |
final_report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": final_report_prompt}], "stream": True}
|
| 162 |
|
| 163 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=final_report_payload) as response:
|
| 164 |
-
|
| 165 |
-
error_text = await response.text()
|
| 166 |
-
raise Exception(f"LLM API Error for final report: {response.status}, {error_text}")
|
| 167 |
async for line in response.content:
|
| 168 |
if line.strip():
|
| 169 |
line_str = line.decode('utf-8').strip()
|
|
@@ -171,13 +171,12 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 171 |
if line_str == "[DONE]": break
|
| 172 |
try:
|
| 173 |
chunk = json.loads(line_str)
|
| 174 |
-
content = chunk.get("choices", [{}])
|
| 175 |
if content: yield format_sse({"event": "chunk", "data": content})
|
| 176 |
except json.JSONDecodeError: continue
|
| 177 |
|
| 178 |
unique_sources = list({s['link']: s for s in all_sources}.values())
|
| 179 |
yield format_sse({"event": "sources", "data": unique_sources})
|
| 180 |
-
|
| 181 |
except Exception as e:
|
| 182 |
logger.error(f"A critical error occurred in the main research stream: {e}")
|
| 183 |
yield format_sse({"event": "error", "data": str(e)})
|
|
|
|
| 1 |
+
|
| 2 |
+
Your Python code (`json.loads()`) sees the triple backticks ` ``` ` and the word `json` and correctly determines that this is *not* a valid JSON array. It's a string containing a code block.
|
| 3 |
+
|
| 4 |
+
The fix is to make our code smarter by cleaning this "helpful" formatting *before* attempting to parse it as JSON.
|
| 5 |
+
|
| 6 |
+
### The Solution
|
| 7 |
+
|
| 8 |
+
We will implement two key changes in `main.py`:
|
| 9 |
+
|
| 10 |
+
1. **Smart JSON Extraction:** We'll add a function that uses a regular expression to find and extract the JSON array (`[...]`) from the LLM's response string, reliably ignoring any Markdown fences or other text.
|
| 11 |
+
2. **Improved Prompting:** We will make our instruction in the prompt even more explicit to reduce the chance of the model adding extra formatting in the first place.
|
| 12 |
+
|
| 13 |
+
Regarding your request to "allow streaming for llm," the final report generation step **already does this correctly.** The `typegpt.net` API, being OpenAI-compatible, uses the exact streaming format that the code is built to handle. The previous error was simply preventing the process from ever *reaching* the final streaming step. This fix will unblock it.
|
| 14 |
+
|
| 15 |
+
The `Dockerfile` and `requirements.txt` do not need any changes.
|
| 16 |
+
|
| 17 |
+
### Updated `main.py`
|
| 18 |
+
|
| 19 |
+
Replace the entire content of your `main.py` with this definitive, robust version.
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
import os
|
| 23 |
import asyncio
|
| 24 |
import json
|
| 25 |
import logging
|
| 26 |
+
import re
|
| 27 |
+
from typing import AsyncGenerator, Optional
|
| 28 |
|
| 29 |
from fastapi import FastAPI
|
| 30 |
from fastapi.responses import StreamingResponse
|
|
|
|
| 43 |
if not LLM_API_KEY:
|
| 44 |
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
|
| 45 |
else:
|
| 46 |
+
logger.info("LLM API Key loaded successfully.")
|
| 47 |
|
| 48 |
+
# API Provider Constants
|
| 49 |
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
|
| 50 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 51 |
LLM_MODEL = "gpt-4.1-mini"
|
| 52 |
MAX_CONTEXT_CHAR_LENGTH = 120000
|
| 53 |
|
| 54 |
+
# Headers
|
| 55 |
SNAPZION_HEADERS = { 'Content-Type': 'application/json', 'User-Agent': 'AI-Deep-Research-Agent/1.0' }
|
| 56 |
SCRAPING_HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36' }
|
| 57 |
+
LLM_HEADERS = { "Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json" }
|
| 58 |
|
| 59 |
+
# --- Pydantic Models & Helper Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
class DeepResearchRequest(BaseModel):
|
| 61 |
query: str
|
| 62 |
|
| 63 |
+
# ***** CHANGE 1: The core of the fix. A robust JSON extraction function. *****
|
| 64 |
+
def extract_json_from_llm_response(text: str) -> Optional[list]:
|
| 65 |
+
"""
|
| 66 |
+
Finds and parses a JSON array within a string, ignoring Markdown fences.
|
| 67 |
+
"""
|
| 68 |
+
# Regex to find a string that starts with [ and ends with ], accounting for nesting
|
| 69 |
+
match = re.search(r'\[.*\]', text, re.DOTALL)
|
| 70 |
+
if match:
|
| 71 |
+
json_str = match.group(0)
|
| 72 |
+
try:
|
| 73 |
+
return json.loads(json_str)
|
| 74 |
+
except json.JSONDecodeError:
|
| 75 |
+
logger.error(f"Failed to parse extracted JSON string: {json_str}")
|
| 76 |
+
return None
|
| 77 |
+
logger.warning(f"No JSON array found in LLM response: {text}")
|
| 78 |
+
return None
|
| 79 |
+
|
| 80 |
# --- FastAPI App ---
|
| 81 |
app = FastAPI(
|
| 82 |
title="AI Deep Research API",
|
| 83 |
description="Provides streaming deep research completions.",
|
| 84 |
+
version="2.4.0" # Version bump for Markdown parsing fix
|
| 85 |
)
|
| 86 |
|
| 87 |
# --- Core Service Functions (Unchanged) ---
|
| 88 |
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> list:
|
| 89 |
try:
|
| 90 |
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
|
| 91 |
+
response.raise_for_status(); data = await response.json()
|
|
|
|
| 92 |
return data.get("organic_results", [])
|
| 93 |
except Exception as e:
|
| 94 |
+
logger.error(f"Snapzion search failed for query '{query}': {e}"); return []
|
|
|
|
| 95 |
|
| 96 |
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
| 97 |
if url.lower().endswith('.pdf'): return "Error: PDF content cannot be scraped."
|
|
|
|
| 100 |
if response.status != 200: return f"Error: HTTP status {response.status}"
|
| 101 |
html = await response.text()
|
| 102 |
soup = BeautifulSoup(html, "html.parser")
|
| 103 |
+
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']): tag.decompose()
|
|
|
|
| 104 |
return " ".join(soup.stripped_strings)
|
| 105 |
except Exception as e:
|
| 106 |
+
logger.warning(f"Scraping failed for {url}: {e}"); return f"Error: {e}"
|
|
|
|
| 107 |
|
| 108 |
async def search_and_scrape(session: aiohttp.ClientSession, query: str) -> tuple[str, list]:
|
| 109 |
+
search_results = await call_snapzion_search(session, query); sources = search_results[:4]
|
|
|
|
| 110 |
if not sources: return "", []
|
| 111 |
scrape_tasks = [scrape_url(session, source["link"]) for source in sources]
|
| 112 |
scraped_contents = await asyncio.gather(*scrape_tasks)
|
| 113 |
+
context = "\n\n".join(f"Source: {sources[i]['link']}\nContent: {content}" for i, content in enumerate(scraped_contents) if not content.startswith("Error:"))
|
|
|
|
|
|
|
|
|
|
| 114 |
return context, sources
|
| 115 |
|
| 116 |
# --- Streaming Deep Research Logic ---
|
|
|
|
| 117 |
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
| 118 |
+
def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
try:
|
| 120 |
async with aiohttp.ClientSession() as session:
|
| 121 |
# Step 1: Generate Sub-Questions
|
| 122 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
| 123 |
|
| 124 |
+
# ***** CHANGE 2: Improved, stricter prompt *****
|
| 125 |
sub_question_prompt = {
|
| 126 |
+
"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array, without markdown, explanations, or any other text. Example: [\"Question 1?\", \"Question 2?\"]"}]
|
|
|
|
| 127 |
}
|
|
|
|
|
|
|
| 128 |
try:
|
|
|
|
| 129 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=sub_question_prompt, timeout=20) as response:
|
| 130 |
+
response.raise_for_status()
|
| 131 |
+
raw_response_text = await response.text()
|
| 132 |
+
result = json.loads(raw_response_text)
|
| 133 |
+
llm_content = result.get('choices', [{}]).get('message', {}).get('content', '')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
sub_questions = extract_json_from_llm_response(llm_content)
|
| 136 |
+
if not sub_questions:
|
| 137 |
+
raise ValueError(f"Could not extract valid JSON from LLM content: {llm_content}")
|
|
|
|
|
|
|
|
|
|
| 138 |
except Exception as e:
|
| 139 |
+
logger.error(f"Failed to generate research plan: {e}")
|
| 140 |
+
yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"}); return
|
|
|
|
|
|
|
| 141 |
|
| 142 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 143 |
|
| 144 |
+
# Steps 2, 3, 4 will now execute correctly
|
| 145 |
research_tasks = [search_and_scrape(session, sq) for sq in sub_questions]
|
| 146 |
yield format_sse({"event": "status", "data": f"Starting research on {len(sub_questions)} topics..."})
|
| 147 |
|
|
|
|
| 152 |
if context: consolidated_context += context + "\n\n---\n\n"
|
| 153 |
if sources: all_sources.extend(sources)
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
if not consolidated_context.strip():
|
| 156 |
+
yield format_sse({"event": "error", "data": "Failed to gather any research context."}); return
|
|
|
|
| 157 |
|
| 158 |
yield format_sse({"event": "status", "data": "Generating final report..."})
|
| 159 |
+
if len(consolidated_context) > MAX_CONTEXT_CHAR_LENGTH:
|
| 160 |
+
consolidated_context = consolidated_context[:MAX_CONTEXT_CHAR_LENGTH]
|
| 161 |
+
|
| 162 |
final_report_prompt = f'Synthesize the provided context into a comprehensive report on "{query}". Use markdown. Context:\n{consolidated_context}'
|
| 163 |
final_report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": final_report_prompt}], "stream": True}
|
| 164 |
|
| 165 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=final_report_payload) as response:
|
| 166 |
+
response.raise_for_status()
|
|
|
|
|
|
|
| 167 |
async for line in response.content:
|
| 168 |
if line.strip():
|
| 169 |
line_str = line.decode('utf-8').strip()
|
|
|
|
| 171 |
if line_str == "[DONE]": break
|
| 172 |
try:
|
| 173 |
chunk = json.loads(line_str)
|
| 174 |
+
content = chunk.get("choices", [{}]).get("delta", {}).get("content")
|
| 175 |
if content: yield format_sse({"event": "chunk", "data": content})
|
| 176 |
except json.JSONDecodeError: continue
|
| 177 |
|
| 178 |
unique_sources = list({s['link']: s for s in all_sources}.values())
|
| 179 |
yield format_sse({"event": "sources", "data": unique_sources})
|
|
|
|
| 180 |
except Exception as e:
|
| 181 |
logger.error(f"A critical error occurred in the main research stream: {e}")
|
| 182 |
yield format_sse({"event": "error", "data": str(e)})
|