Update main.py
Browse files
main.py
CHANGED
|
@@ -1,85 +1,140 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
-
from
|
| 5 |
import aiohttp
|
|
|
|
| 6 |
|
| 7 |
# --- Configuration ---
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
LLM_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"
|
| 13 |
|
|
|
|
| 14 |
app = FastAPI(
|
| 15 |
-
title="
|
| 16 |
-
description="
|
| 17 |
-
version="1.0.
|
| 18 |
)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
-
async with session.
|
| 24 |
response.raise_for_status()
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
return " ".join(chunk for chunk in chunks if chunk)
|
| 35 |
-
except requests.exceptions.RequestException as e:
|
| 36 |
-
raise HTTPException(status_code=400, detail=f"Error fetching the URL: {e}")
|
| 37 |
-
|
| 38 |
-
async def process_with_llm(session, content: str, query: str):
|
| 39 |
-
"""Sends the scraped content and a query to the LLM for processing."""
|
| 40 |
-
headers = {
|
| 41 |
-
"Content-Type": "application/json",
|
| 42 |
-
"Authorization": f"Bearer {LLM_API_KEY}",
|
| 43 |
-
}
|
| 44 |
-
data = {
|
| 45 |
-
"messages": [
|
| 46 |
-
{
|
| 47 |
-
"role": "system",
|
| 48 |
-
"content": "You are a helpful assistant that analyzes web content."
|
| 49 |
-
},
|
| 50 |
-
{
|
| 51 |
-
"role": "user",
|
| 52 |
-
"content": f"Based on the following content, please answer this question: '{query}'\n\nContent:\n{content}"
|
| 53 |
-
}
|
| 54 |
-
],
|
| 55 |
-
"model": LLM_MODEL,
|
| 56 |
-
"stream": False # Set to False for a single response
|
| 57 |
-
}
|
| 58 |
try:
|
| 59 |
-
async with session.
|
| 60 |
-
response.
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"""
|
| 68 |
-
|
| 69 |
-
and
|
| 70 |
"""
|
| 71 |
async with aiohttp.ClientSession() as session:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import asyncio
|
| 3 |
+
from fastapi import FastAPI, HTTPException, Query
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
import aiohttp
|
| 6 |
+
from bs4 import BeautifulSoup
|
| 7 |
|
| 8 |
# --- Configuration ---
|
| 9 |
+
load_dotenv()
|
| 10 |
+
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
| 11 |
+
|
| 12 |
+
if not LLM_API_KEY:
|
| 13 |
+
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
|
| 14 |
+
|
| 15 |
+
# Snapzion Search API Configuration
|
| 16 |
+
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
|
| 17 |
+
SNAPZION_HEADERS = {
|
| 18 |
+
'accept': '*/*',
|
| 19 |
+
'accept-language': 'en-US,en;q=0.9',
|
| 20 |
+
'content-type': 'application/json',
|
| 21 |
+
'origin': 'https://search.snapzion.com',
|
| 22 |
+
'priority': 'u=1, i',
|
| 23 |
+
'referer': 'https://search.snapzion.com/docs',
|
| 24 |
+
'sec-ch-ua': '"Chromium";v="140", "Not=A?Brand";v="24", "Google Chrome";v="140"',
|
| 25 |
+
'sec-ch-ua-mobile': '?0',
|
| 26 |
+
'sec-ch-ua-platform': '"Windows"',
|
| 27 |
+
'sec-fetch-dest': 'empty',
|
| 28 |
+
'sec-fetch-mode': 'cors',
|
| 29 |
+
'sec-fetch-site': 'same-origin',
|
| 30 |
+
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36',
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
# LLM Configuration
|
| 34 |
+
LLM_API_URL = "https://api.inference.net/v1/chat/completions"
|
| 35 |
LLM_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"
|
| 36 |
|
| 37 |
+
# --- FastAPI App Initialization ---
|
| 38 |
app = FastAPI(
|
| 39 |
+
title="AI Search Snippets API (Snapzion)",
|
| 40 |
+
description="Provides AI-generated summaries from Snapzion search results.",
|
| 41 |
+
version="1.0.1"
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# --- Core Asynchronous Functions ---
|
| 45 |
+
|
| 46 |
+
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> list:
|
| 47 |
+
"""Calls the Snapzion search API and returns a list of organic results."""
|
| 48 |
try:
|
| 49 |
+
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
|
| 50 |
response.raise_for_status()
|
| 51 |
+
data = await response.json()
|
| 52 |
+
return data.get("organic_results", [])
|
| 53 |
+
except Exception as e:
|
| 54 |
+
raise HTTPException(status_code=503, detail=f"Search service (Snapzion) failed: {e}")
|
| 55 |
+
|
| 56 |
+
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
| 57 |
+
"""Asynchronously scrapes the primary text content from a URL, ignoring PDFs."""
|
| 58 |
+
if url.lower().endswith('.pdf'):
|
| 59 |
+
return "Content is a PDF, which cannot be scraped."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
try:
|
| 61 |
+
async with session.get(url, timeout=10) as response:
|
| 62 |
+
if response.status != 200:
|
| 63 |
+
return f"Error: Failed to fetch {url} with status {response.status}"
|
| 64 |
+
html = await response.text()
|
| 65 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 66 |
+
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
|
| 67 |
+
tag.decompose()
|
| 68 |
+
return " ".join(soup.stripped_strings)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
return f"Error: Could not scrape {url}. Reason: {e}"
|
| 71 |
+
|
| 72 |
+
async def get_ai_snippet(query: str, context: str, sources: list) -> str:
|
| 73 |
+
"""Generates a synthesized answer using an LLM based on the provided context."""
|
| 74 |
+
headers = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json"}
|
| 75 |
+
source_list_str = "\n".join([f"[{i+1}] {source['title']}: {source['link']}" for i, source in enumerate(sources)])
|
| 76 |
+
|
| 77 |
+
prompt = f"""
|
| 78 |
+
Based *only* on the provided context from web pages, provide a concise, factual answer to the user's query. Cite every sentence with the corresponding source number(s), like `[1]`, `[2]`, or `[1, 3]`.
|
| 79 |
+
|
| 80 |
+
Sources:
|
| 81 |
+
{source_list_str}
|
| 82 |
|
| 83 |
+
Context:
|
| 84 |
+
---
|
| 85 |
+
{context}
|
| 86 |
+
---
|
| 87 |
+
|
| 88 |
+
User Query: "{query}"
|
| 89 |
+
|
| 90 |
+
Answer with citations:
|
| 91 |
+
"""
|
| 92 |
+
data = {"model": LLM_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 500}
|
| 93 |
+
|
| 94 |
+
async with aiohttp.ClientSession() as session:
|
| 95 |
+
try:
|
| 96 |
+
async with session.post(LLM_API_URL, headers=headers, json=data, timeout=45) as response:
|
| 97 |
+
response.raise_for_status()
|
| 98 |
+
result = await response.json()
|
| 99 |
+
return result['choices'][0]['message']['content']
|
| 100 |
+
except Exception as e:
|
| 101 |
+
raise HTTPException(status_code=502, detail=f"Failed to get response from LLM: {e}")
|
| 102 |
+
|
| 103 |
+
# --- API Endpoint ---
|
| 104 |
+
|
| 105 |
+
@app.get("/search")
|
| 106 |
+
async def ai_search(q: str = Query(..., min_length=3, description="The search query.")):
|
| 107 |
"""
|
| 108 |
+
Performs an AI-powered search using Snapzion. It finds relevant web pages,
|
| 109 |
+
scrapes their content, and generates a synthesized answer with citations.
|
| 110 |
"""
|
| 111 |
async with aiohttp.ClientSession() as session:
|
| 112 |
+
# 1. Search for relevant web pages using Snapzion
|
| 113 |
+
search_results = await call_snapzion_search(session, q)
|
| 114 |
+
if not search_results:
|
| 115 |
+
raise HTTPException(status_code=404, detail="Could not find any relevant sources for the query.")
|
| 116 |
+
|
| 117 |
+
# Limit to the top 4 results for speed and relevance
|
| 118 |
+
sources = search_results[:4]
|
| 119 |
|
| 120 |
+
# 2. Scrape all pages concurrently for speed
|
| 121 |
+
scrape_tasks = [scrape_url(session, source["link"]) for source in sources]
|
| 122 |
+
scraped_contents = await asyncio.gather(*scrape_tasks)
|
| 123 |
|
| 124 |
+
# 3. Combine content and snippets for a rich context
|
| 125 |
+
full_context = "\n\n".join(
|
| 126 |
+
f"Source [{i+1}] (from {sources[i]['link']}):\nOriginal Snippet: {sources[i]['snippet']}\nScraped Content: {content}"
|
| 127 |
+
for i, content in enumerate(scraped_contents) if not content.startswith("Error:")
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
if not full_context.strip():
|
| 131 |
+
raise HTTPException(status_code=500, detail="Failed to scrape content from all available sources.")
|
| 132 |
+
|
| 133 |
+
# 4. Generate the final AI snippet
|
| 134 |
+
ai_summary = await get_ai_snippet(q, full_context, sources)
|
| 135 |
|
| 136 |
+
return {"ai_summary": ai_summary, "sources": sources}
|
| 137 |
+
|
| 138 |
+
@app.get("/")
|
| 139 |
+
def root():
|
| 140 |
+
return {"message": "AI Search API is active. Use the /docs endpoint to test."}
|