Update main.py
Browse files
main.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
import asyncio
|
| 4 |
import json
|
|
@@ -6,6 +5,7 @@ import logging
|
|
| 6 |
import random
|
| 7 |
import re
|
| 8 |
from typing import AsyncGenerator, Optional, Tuple, List
|
|
|
|
| 9 |
|
| 10 |
from fastapi import FastAPI
|
| 11 |
from fastapi.responses import StreamingResponse
|
|
@@ -14,7 +14,6 @@ from pydantic import BaseModel
|
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import aiohttp
|
| 16 |
from bs4 import BeautifulSoup
|
| 17 |
-
from ddgs import DDGS
|
| 18 |
|
| 19 |
# --- Configuration ---
|
| 20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
@@ -48,17 +47,11 @@ class DeepResearchRequest(BaseModel):
|
|
| 48 |
app = FastAPI(
|
| 49 |
title="AI Deep Research API",
|
| 50 |
description="Provides robust, long-form, streaming deep research completions using the DuckDuckGo Search API.",
|
| 51 |
-
version="9.
|
| 52 |
)
|
| 53 |
|
| 54 |
# Enable CORS for all origins
|
| 55 |
-
app.add_middleware(
|
| 56 |
-
CORSMiddleware,
|
| 57 |
-
allow_origins=["*"],
|
| 58 |
-
allow_credentials=True,
|
| 59 |
-
allow_methods=["*"],
|
| 60 |
-
allow_headers=["*"]
|
| 61 |
-
)
|
| 62 |
|
| 63 |
# --- Helper Functions ---
|
| 64 |
def extract_json_from_llm_response(text: str) -> Optional[list]:
|
|
@@ -72,18 +65,48 @@ def extract_json_from_llm_response(text: str) -> Optional[list]:
|
|
| 72 |
|
| 73 |
# --- Core Service Functions ---
|
| 74 |
async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str, max_results: int = 10) -> List[dict]:
|
| 75 |
-
"""Performs a search
|
| 76 |
-
logger.info(f"Searching DuckDuckGo
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
try:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
except Exception as e:
|
| 88 |
logger.error(f"DuckDuckGo search failed for query '{query}': {e}", exc_info=True)
|
| 89 |
return []
|
|
@@ -94,24 +117,17 @@ async def research_and_process_source(session: aiohttp.ClientSession, source: di
|
|
| 94 |
logger.info(f"Scraping: {source['link']}")
|
| 95 |
if source['link'].lower().endswith('.pdf'):
|
| 96 |
raise ValueError("PDF content")
|
| 97 |
-
|
| 98 |
async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
|
| 99 |
if response.status != 200:
|
| 100 |
raise ValueError(f"HTTP status {response.status}")
|
| 101 |
-
|
| 102 |
html = await response.text()
|
| 103 |
soup = BeautifulSoup(html, "html.parser")
|
| 104 |
-
|
| 105 |
-
# Remove unnecessary tags
|
| 106 |
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
|
| 107 |
tag.decompose()
|
| 108 |
-
|
| 109 |
content = " ".join(soup.stripped_strings)
|
| 110 |
if not content.strip():
|
| 111 |
raise ValueError("Parsed content is empty.")
|
| 112 |
-
|
| 113 |
return content, source
|
| 114 |
-
|
| 115 |
except Exception as e:
|
| 116 |
logger.warning(f"Scraping failed for {source['link']} ({e}). Falling back to snippet.")
|
| 117 |
return source.get('snippet', ''), source
|
|
@@ -122,10 +138,8 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 122 |
return f"data: {json.dumps(data)}\n\n"
|
| 123 |
|
| 124 |
try:
|
| 125 |
-
# Create a single session for all HTTP requests in this stream
|
| 126 |
async with aiohttp.ClientSession() as session:
|
| 127 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
| 128 |
-
|
| 129 |
plan_prompt = {
|
| 130 |
"model": LLM_MODEL,
|
| 131 |
"messages": [{
|
|
@@ -133,7 +147,6 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 133 |
"content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array. Example: [\"Question 1?\"]"
|
| 134 |
}]
|
| 135 |
}
|
| 136 |
-
|
| 137 |
try:
|
| 138 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=25) as response:
|
| 139 |
response.raise_for_status()
|
|
@@ -146,13 +159,10 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 146 |
return
|
| 147 |
|
| 148 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 149 |
-
yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
|
| 150 |
|
| 151 |
-
|
| 152 |
search_tasks = [call_duckduckgo_search(session, sq) for sq in sub_questions]
|
| 153 |
all_search_results = await asyncio.gather(*search_tasks)
|
| 154 |
-
|
| 155 |
-
# Flatten and deduplicate sources by link
|
| 156 |
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
|
| 157 |
|
| 158 |
if not unique_sources:
|
|
@@ -160,14 +170,10 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 160 |
return
|
| 161 |
|
| 162 |
sources_to_process = unique_sources[:MAX_SOURCES_TO_PROCESS]
|
| 163 |
-
yield format_sse({
|
| 164 |
-
"event": "status",
|
| 165 |
-
"data": f"Found {len(unique_sources)} unique sources. Processing the top {len(sources_to_process)}..."
|
| 166 |
-
})
|
| 167 |
|
| 168 |
processing_tasks = [research_and_process_source(session, source) for source in sources_to_process]
|
| 169 |
-
consolidated_context = ""
|
| 170 |
-
all_sources_used = []
|
| 171 |
|
| 172 |
for task in asyncio.as_completed(processing_tasks):
|
| 173 |
content, source_info = await task
|
|
@@ -180,30 +186,20 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 180 |
return
|
| 181 |
|
| 182 |
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
|
| 183 |
-
|
| 184 |
report_prompt = f'Synthesize the provided context into a long-form, comprehensive, multi-page report on "{query}". Use markdown. Elaborate extensively on each point. Base your entire report ONLY on the provided context.\n\n## Research Context ##\n{consolidated_context}'
|
| 185 |
-
report_payload = {
|
| 186 |
-
"model": LLM_MODEL,
|
| 187 |
-
"messages": [{"role": "user", "content": report_prompt}],
|
| 188 |
-
"stream": True
|
| 189 |
-
}
|
| 190 |
|
| 191 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
|
| 192 |
response.raise_for_status()
|
| 193 |
-
|
| 194 |
async for line in response.content:
|
| 195 |
line_str = line.decode('utf-8').strip()
|
| 196 |
-
|
| 197 |
if line_str.startswith('data:'):
|
| 198 |
line_str = line_str[5:].strip()
|
| 199 |
-
|
| 200 |
if line_str == "[DONE]":
|
| 201 |
break
|
| 202 |
-
|
| 203 |
try:
|
| 204 |
chunk = json.loads(line_str)
|
| 205 |
choices = chunk.get("choices")
|
| 206 |
-
|
| 207 |
if choices and isinstance(choices, list) and len(choices) > 0:
|
| 208 |
content = choices[0].get("delta", {}).get("content")
|
| 209 |
if content:
|
|
@@ -212,7 +208,18 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 212 |
continue
|
| 213 |
|
| 214 |
yield format_sse({"event": "sources", "data": all_sources_used})
|
| 215 |
-
|
| 216 |
except Exception as e:
|
| 217 |
logger.error(f"A critical error occurred: {e}", exc_info=True)
|
| 218 |
-
yield format_sse({"event": "error", "data": str(e)})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
| 3 |
import json
|
|
|
|
| 5 |
import random
|
| 6 |
import re
|
| 7 |
from typing import AsyncGenerator, Optional, Tuple, List
|
| 8 |
+
from urllib.parse import unquote
|
| 9 |
|
| 10 |
from fastapi import FastAPI
|
| 11 |
from fastapi.responses import StreamingResponse
|
|
|
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import aiohttp
|
| 16 |
from bs4 import BeautifulSoup
|
|
|
|
| 17 |
|
| 18 |
# --- Configuration ---
|
| 19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 47 |
app = FastAPI(
|
| 48 |
title="AI Deep Research API",
|
| 49 |
description="Provides robust, long-form, streaming deep research completions using the DuckDuckGo Search API.",
|
| 50 |
+
version="9.3.0" # Using direct DuckDuckGo HTML API
|
| 51 |
)
|
| 52 |
|
| 53 |
# Enable CORS for all origins
|
| 54 |
+
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# --- Helper Functions ---
|
| 57 |
def extract_json_from_llm_response(text: str) -> Optional[list]:
|
|
|
|
| 65 |
|
| 66 |
# --- Core Service Functions ---
|
| 67 |
async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str, max_results: int = 10) -> List[dict]:
|
| 68 |
+
"""Performs a search by directly scraping the DuckDuckGo HTML interface."""
|
| 69 |
+
logger.info(f"Searching DuckDuckGo for: '{query}'")
|
| 70 |
+
search_url = "https://html.duckduckgo.com/html/"
|
| 71 |
+
params = {"q": query}
|
| 72 |
+
headers = {"User-Agent": random.choice(USER_AGENTS)}
|
| 73 |
+
|
| 74 |
try:
|
| 75 |
+
async with session.post(search_url, data=params, headers=headers, ssl=False) as response:
|
| 76 |
+
if response.status != 200:
|
| 77 |
+
logger.error(f"DuckDuckGo search failed with status {response.status} for query '{query}'")
|
| 78 |
+
return []
|
| 79 |
+
|
| 80 |
+
html = await response.text()
|
| 81 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 82 |
+
results = []
|
| 83 |
+
|
| 84 |
+
for result in soup.find_all('div', class_='result'):
|
| 85 |
+
title_elem = result.find('a', class_='result__a')
|
| 86 |
+
snippet_elem = result.find('a', class_='result__snippet')
|
| 87 |
+
link_elem = result.find('a', class_='result__url')
|
| 88 |
+
|
| 89 |
+
if title_elem and snippet_elem and link_elem:
|
| 90 |
+
# Extract the raw href which is a redirect
|
| 91 |
+
raw_href = link_elem.get('href', '')
|
| 92 |
+
|
| 93 |
+
# The actual URL is in a query parameter 'uddg'
|
| 94 |
+
parsed_url_match = re.search(r'uddg=([^&]+)', raw_href)
|
| 95 |
+
if parsed_url_match:
|
| 96 |
+
# URL decode the extracted URL
|
| 97 |
+
link = unquote(parsed_url_match.group(1))
|
| 98 |
+
else:
|
| 99 |
+
continue # Skip if we can't find the clean URL
|
| 100 |
+
|
| 101 |
+
title = title_elem.get_text(strip=True)
|
| 102 |
+
snippet = snippet_elem.get_text(strip=True)
|
| 103 |
+
|
| 104 |
+
results.append({'title': title, 'link': link, 'snippet': snippet})
|
| 105 |
+
if len(results) >= max_results:
|
| 106 |
+
break
|
| 107 |
+
|
| 108 |
+
logger.info(f"Found {len(results)} sources from DuckDuckGo for: '{query}'")
|
| 109 |
+
return results
|
| 110 |
except Exception as e:
|
| 111 |
logger.error(f"DuckDuckGo search failed for query '{query}': {e}", exc_info=True)
|
| 112 |
return []
|
|
|
|
| 117 |
logger.info(f"Scraping: {source['link']}")
|
| 118 |
if source['link'].lower().endswith('.pdf'):
|
| 119 |
raise ValueError("PDF content")
|
|
|
|
| 120 |
async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
|
| 121 |
if response.status != 200:
|
| 122 |
raise ValueError(f"HTTP status {response.status}")
|
|
|
|
| 123 |
html = await response.text()
|
| 124 |
soup = BeautifulSoup(html, "html.parser")
|
|
|
|
|
|
|
| 125 |
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
|
| 126 |
tag.decompose()
|
|
|
|
| 127 |
content = " ".join(soup.stripped_strings)
|
| 128 |
if not content.strip():
|
| 129 |
raise ValueError("Parsed content is empty.")
|
|
|
|
| 130 |
return content, source
|
|
|
|
| 131 |
except Exception as e:
|
| 132 |
logger.warning(f"Scraping failed for {source['link']} ({e}). Falling back to snippet.")
|
| 133 |
return source.get('snippet', ''), source
|
|
|
|
| 138 |
return f"data: {json.dumps(data)}\n\n"
|
| 139 |
|
| 140 |
try:
|
|
|
|
| 141 |
async with aiohttp.ClientSession() as session:
|
| 142 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
|
|
|
| 143 |
plan_prompt = {
|
| 144 |
"model": LLM_MODEL,
|
| 145 |
"messages": [{
|
|
|
|
| 147 |
"content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array. Example: [\"Question 1?\"]"
|
| 148 |
}]
|
| 149 |
}
|
|
|
|
| 150 |
try:
|
| 151 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=25) as response:
|
| 152 |
response.raise_for_status()
|
|
|
|
| 159 |
return
|
| 160 |
|
| 161 |
yield format_sse({"event": "plan", "data": sub_questions})
|
|
|
|
| 162 |
|
| 163 |
+
yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
|
| 164 |
search_tasks = [call_duckduckgo_search(session, sq) for sq in sub_questions]
|
| 165 |
all_search_results = await asyncio.gather(*search_tasks)
|
|
|
|
|
|
|
| 166 |
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
|
| 167 |
|
| 168 |
if not unique_sources:
|
|
|
|
| 170 |
return
|
| 171 |
|
| 172 |
sources_to_process = unique_sources[:MAX_SOURCES_TO_PROCESS]
|
| 173 |
+
yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Processing the top {len(sources_to_process)}..."})
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
processing_tasks = [research_and_process_source(session, source) for source in sources_to_process]
|
| 176 |
+
consolidated_context, all_sources_used = "", []
|
|
|
|
| 177 |
|
| 178 |
for task in asyncio.as_completed(processing_tasks):
|
| 179 |
content, source_info = await task
|
|
|
|
| 186 |
return
|
| 187 |
|
| 188 |
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
|
|
|
|
| 189 |
report_prompt = f'Synthesize the provided context into a long-form, comprehensive, multi-page report on "{query}". Use markdown. Elaborate extensively on each point. Base your entire report ONLY on the provided context.\n\n## Research Context ##\n{consolidated_context}'
|
| 190 |
+
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
|
| 193 |
response.raise_for_status()
|
|
|
|
| 194 |
async for line in response.content:
|
| 195 |
line_str = line.decode('utf-8').strip()
|
|
|
|
| 196 |
if line_str.startswith('data:'):
|
| 197 |
line_str = line_str[5:].strip()
|
|
|
|
| 198 |
if line_str == "[DONE]":
|
| 199 |
break
|
|
|
|
| 200 |
try:
|
| 201 |
chunk = json.loads(line_str)
|
| 202 |
choices = chunk.get("choices")
|
|
|
|
| 203 |
if choices and isinstance(choices, list) and len(choices) > 0:
|
| 204 |
content = choices[0].get("delta", {}).get("content")
|
| 205 |
if content:
|
|
|
|
| 208 |
continue
|
| 209 |
|
| 210 |
yield format_sse({"event": "sources", "data": all_sources_used})
|
|
|
|
| 211 |
except Exception as e:
|
| 212 |
logger.error(f"A critical error occurred: {e}", exc_info=True)
|
| 213 |
+
yield format_sse({"event": "error", "data": f"An unexpected error occurred: {str(e)}"})
|
| 214 |
+
|
| 215 |
+
@app.post("/deep-research", response_class=StreamingResponse)
|
| 216 |
+
async def deep_research_endpoint(request: DeepResearchRequest):
|
| 217 |
+
"""
|
| 218 |
+
Accepts a query and streams back a detailed research report.
|
| 219 |
+
Events: status, plan, chunk, sources, error
|
| 220 |
+
"""
|
| 221 |
+
return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream")
|
| 222 |
+
|
| 223 |
+
if __name__ == "__main__":
|
| 224 |
+
import uvicorn
|
| 225 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|