Update main.py
Browse files
main.py
CHANGED
|
@@ -29,13 +29,9 @@ else:
|
|
| 29 |
# --- Constants & Headers ---
|
| 30 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 31 |
LLM_MODEL = "gpt-4.1-mini"
|
|
|
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
TARGET_TOKEN_LIMIT = 28000
|
| 35 |
-
ESTIMATED_CHARS_PER_TOKEN = 4
|
| 36 |
-
MAX_CONTEXT_CHAR_LENGTH = TARGET_TOKEN_LIMIT * ESTIMATED_CHARS_PER_TOKEN
|
| 37 |
-
|
| 38 |
-
# Real Browser User Agents for Rotation (Used for both search and scraping)
|
| 39 |
USER_AGENTS = [
|
| 40 |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
|
| 41 |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
|
|
@@ -56,71 +52,40 @@ def extract_json_from_llm_response(text: str) -> Optional[list]:
|
|
| 56 |
|
| 57 |
app = FastAPI(
|
| 58 |
title="AI Deep Research API",
|
| 59 |
-
description="Provides robust, streaming deep research completions
|
| 60 |
-
version="
|
| 61 |
)
|
| 62 |
|
| 63 |
# --- Core Service Functions ---
|
| 64 |
-
|
| 65 |
-
# ***** THE NEW SEARCH FUNCTION *****
|
| 66 |
async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str) -> List[dict]:
|
| 67 |
-
"""Performs a search using DuckDuckGo's HTML interface and parses the results."""
|
| 68 |
search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}"
|
| 69 |
-
logger.info(f"Searching DuckDuckGo for: '{query}'")
|
| 70 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
| 71 |
-
|
| 72 |
try:
|
| 73 |
async with session.get(search_url, headers=headers, timeout=15) as response:
|
| 74 |
-
response.raise_for_status()
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
title_tag = result_container.find('a', class_='result__a')
|
| 82 |
-
snippet_tag = result_container.find('a', class_='result__snippet')
|
| 83 |
-
|
| 84 |
-
if title_tag and snippet_tag and title_tag.has_attr('href'):
|
| 85 |
-
# The link in DDG's HTML version is a redirect, so we need to clean it
|
| 86 |
-
raw_link = title_tag['href']
|
| 87 |
-
cleaned_link = re.sub(r'/l/\?kh=-1&uddg=', '', raw_link)
|
| 88 |
-
|
| 89 |
-
results.append({
|
| 90 |
-
'title': title_tag.get_text(strip=True),
|
| 91 |
-
'link': cleaned_link,
|
| 92 |
-
'snippet': snippet_tag.get_text(strip=True)
|
| 93 |
-
})
|
| 94 |
-
|
| 95 |
logger.info(f"Found {len(results)} sources from DuckDuckGo for: '{query}'")
|
| 96 |
return results
|
| 97 |
except Exception as e:
|
| 98 |
logger.error(f"DuckDuckGo search failed for query '{query}': {e}"); return []
|
| 99 |
|
| 100 |
-
|
| 101 |
async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
|
| 102 |
-
"""Scrapes a single source and falls back to its snippet if scraping fails."""
|
| 103 |
-
logger.info(f"Processing source: {source['link']}")
|
| 104 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
| 105 |
-
|
| 106 |
try:
|
| 107 |
-
if source['link'].lower().endswith('.pdf'):
|
| 108 |
-
raise ValueError("PDF content cannot be scraped.")
|
| 109 |
-
|
| 110 |
async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
|
| 111 |
-
if response.status != 200:
|
| 112 |
-
raise ValueError(f"HTTP status {response.status}")
|
| 113 |
-
|
| 114 |
html = await response.text()
|
| 115 |
soup = BeautifulSoup(html, "html.parser")
|
| 116 |
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']): tag.decompose()
|
| 117 |
content = " ".join(soup.stripped_strings)
|
| 118 |
-
|
| 119 |
-
if not content.strip(): # Check if parsed content is empty
|
| 120 |
-
raise ValueError("Parsed content is empty.")
|
| 121 |
-
|
| 122 |
return content, source
|
| 123 |
-
|
| 124 |
except Exception as e:
|
| 125 |
logger.warning(f"Scraping failed for {source['link']} ({e}). Falling back to snippet.")
|
| 126 |
return source.get('snippet', ''), source
|
|
@@ -143,40 +108,49 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 143 |
|
| 144 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 145 |
|
| 146 |
-
# Step 2: Conduct Research
|
| 147 |
yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
|
| 148 |
search_tasks = [call_duckduckgo_search(session, sq) for sq in sub_questions]
|
| 149 |
all_search_results = await asyncio.gather(*search_tasks)
|
| 150 |
|
| 151 |
-
unique_sources = list({source['link']: source for results in all_search_results for source in results
|
| 152 |
|
| 153 |
if not unique_sources:
|
| 154 |
-
yield format_sse({"event": "error", "data": "All search queries returned zero usable sources
|
| 155 |
|
| 156 |
-
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
processing_tasks = [research_and_process_source(session, source) for source in
|
| 159 |
consolidated_context, all_sources_used = "", []
|
| 160 |
-
successful_scrapes = 0
|
| 161 |
|
| 162 |
for task in asyncio.as_completed(processing_tasks):
|
| 163 |
content, source_info = await task
|
| 164 |
if content:
|
| 165 |
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
|
| 166 |
all_sources_used.append(source_info)
|
| 167 |
-
if not content == source_info.get('snippet'): successful_scrapes += 1
|
| 168 |
-
|
| 169 |
-
logger.info(f"Context complete. Scraped {successful_scrapes}/{len(unique_sources)} pages. Used {len(all_sources_used)} total sources (with snippet fallbacks).")
|
| 170 |
|
| 171 |
if not consolidated_context.strip():
|
| 172 |
-
yield format_sse({"event": "error", "data": "Failed to gather any research context
|
| 173 |
|
| 174 |
-
# Step 3: Synthesize Final Report
|
| 175 |
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
|
| 181 |
|
| 182 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
|
|
@@ -185,12 +159,19 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 185 |
line_str = line.decode('utf-8').strip()
|
| 186 |
if line_str.startswith('data:'): line_str = line_str[5:].strip()
|
| 187 |
if line_str == "[DONE]": break
|
|
|
|
|
|
|
| 188 |
try:
|
| 189 |
chunk = json.loads(line_str)
|
| 190 |
-
|
| 191 |
-
if
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
yield format_sse({"event": "sources", "data": all_sources_used})
|
| 195 |
except Exception as e:
|
| 196 |
logger.error(f"A critical error occurred: {e}", exc_info=True)
|
|
|
|
| 29 |
# --- Constants & Headers ---
|
| 30 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 31 |
LLM_MODEL = "gpt-4.1-mini"
|
| 32 |
+
MAX_SOURCES_TO_PROCESS = 15 # Increase research depth for longer reports
|
| 33 |
|
| 34 |
+
# Real Browser User Agents for Rotation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
USER_AGENTS = [
|
| 36 |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
|
| 37 |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
|
|
|
|
| 52 |
|
| 53 |
app = FastAPI(
|
| 54 |
title="AI Deep Research API",
|
| 55 |
+
description="Provides robust, long-form, streaming deep research completions.",
|
| 56 |
+
version="6.0.0" # Final Production Version
|
| 57 |
)
|
| 58 |
|
| 59 |
# --- Core Service Functions ---
|
|
|
|
|
|
|
| 60 |
async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str) -> List[dict]:
|
|
|
|
| 61 |
search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}"
|
|
|
|
| 62 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
|
|
|
| 63 |
try:
|
| 64 |
async with session.get(search_url, headers=headers, timeout=15) as response:
|
| 65 |
+
response.raise_for_status(); html = await response.text()
|
| 66 |
+
soup = BeautifulSoup(html, "html.parser"); results = []
|
| 67 |
+
for res in soup.find_all('div', class_='result'):
|
| 68 |
+
title_tag, snippet_tag = res.find('a', class_='result__a'), res.find('a', class_='result__snippet')
|
| 69 |
+
if title_tag and snippet_tag and 'href' in title_tag.attrs:
|
| 70 |
+
cleaned_link = re.sub(r'/l/\?kh=-1&uddg=', '', title_tag['href'])
|
| 71 |
+
results.append({'title': title_tag.text, 'link': cleaned_link, 'snippet': snippet_tag.text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
logger.info(f"Found {len(results)} sources from DuckDuckGo for: '{query}'")
|
| 73 |
return results
|
| 74 |
except Exception as e:
|
| 75 |
logger.error(f"DuckDuckGo search failed for query '{query}': {e}"); return []
|
| 76 |
|
|
|
|
| 77 |
async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
|
|
|
|
|
|
|
| 78 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
|
|
|
| 79 |
try:
|
| 80 |
+
if source['link'].lower().endswith('.pdf'): raise ValueError("PDF content")
|
|
|
|
|
|
|
| 81 |
async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
|
| 82 |
+
if response.status != 200: raise ValueError(f"HTTP status {response.status}")
|
|
|
|
|
|
|
| 83 |
html = await response.text()
|
| 84 |
soup = BeautifulSoup(html, "html.parser")
|
| 85 |
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']): tag.decompose()
|
| 86 |
content = " ".join(soup.stripped_strings)
|
| 87 |
+
if not content.strip(): raise ValueError("Parsed content is empty.")
|
|
|
|
|
|
|
|
|
|
| 88 |
return content, source
|
|
|
|
| 89 |
except Exception as e:
|
| 90 |
logger.warning(f"Scraping failed for {source['link']} ({e}). Falling back to snippet.")
|
| 91 |
return source.get('snippet', ''), source
|
|
|
|
| 108 |
|
| 109 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 110 |
|
| 111 |
+
# Step 2: Conduct Deep Research
|
| 112 |
yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
|
| 113 |
search_tasks = [call_duckduckgo_search(session, sq) for sq in sub_questions]
|
| 114 |
all_search_results = await asyncio.gather(*search_tasks)
|
| 115 |
|
| 116 |
+
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
|
| 117 |
|
| 118 |
if not unique_sources:
|
| 119 |
+
yield format_sse({"event": "error", "data": "All search queries returned zero usable sources."}); return
|
| 120 |
|
| 121 |
+
# Limit the number of sources to process for very long reports
|
| 122 |
+
sources_to_process = unique_sources[:MAX_SOURCES_TO_PROCESS]
|
| 123 |
+
yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Processing the top {len(sources_to_process)}..."})
|
| 124 |
|
| 125 |
+
processing_tasks = [research_and_process_source(session, source) for source in sources_to_process]
|
| 126 |
consolidated_context, all_sources_used = "", []
|
|
|
|
| 127 |
|
| 128 |
for task in asyncio.as_completed(processing_tasks):
|
| 129 |
content, source_info = await task
|
| 130 |
if content:
|
| 131 |
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
|
| 132 |
all_sources_used.append(source_info)
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
if not consolidated_context.strip():
|
| 135 |
+
yield format_sse({"event": "error", "data": "Failed to gather any research context."}); return
|
| 136 |
|
| 137 |
+
# Step 3: Synthesize Long-Form Final Report
|
| 138 |
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
|
| 139 |
+
|
| 140 |
+
# ***** ENHANCED PROMPT FOR LONGEST POSSIBLE REPORT *****
|
| 141 |
+
report_prompt = f"""
|
| 142 |
+
You are an expert research analyst. Your task is to synthesize the provided context into a long-form, comprehensive, multi-page report on the topic: "{query}".
|
| 143 |
+
|
| 144 |
+
Follow these instructions carefully:
|
| 145 |
+
1. Write in a professional, academic tone.
|
| 146 |
+
2. Structure the report with a clear introduction, multiple detailed sections with sub-headings using Markdown, and a concluding summary.
|
| 147 |
+
3. Elaborate extensively on each point. Use multiple paragraphs for each section to explore the nuances of the topic.
|
| 148 |
+
4. Base your entire report *only* on the information provided in the context below. Do not use any external knowledge.
|
| 149 |
+
5. Aim for the most detailed and thorough report possible based on the given material.
|
| 150 |
+
|
| 151 |
+
## Research Context ##
|
| 152 |
+
{consolidated_context}
|
| 153 |
+
"""
|
| 154 |
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
|
| 155 |
|
| 156 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
|
|
|
|
| 159 |
line_str = line.decode('utf-8').strip()
|
| 160 |
if line_str.startswith('data:'): line_str = line_str[5:].strip()
|
| 161 |
if line_str == "[DONE]": break
|
| 162 |
+
|
| 163 |
+
# ***** FIX FOR 'list index out of range' ERROR *****
|
| 164 |
try:
|
| 165 |
chunk = json.loads(line_str)
|
| 166 |
+
choices = chunk.get("choices")
|
| 167 |
+
if choices and isinstance(choices, list) and len(choices) > 0:
|
| 168 |
+
content = choices[0].get("delta", {}).get("content")
|
| 169 |
+
if content:
|
| 170 |
+
yield format_sse({"event": "chunk", "data": content})
|
| 171 |
+
except json.JSONDecodeError:
|
| 172 |
+
continue # Ignore malformed lines
|
| 173 |
+
|
| 174 |
+
# Final event with all source data
|
| 175 |
yield format_sse({"event": "sources", "data": all_sources_used})
|
| 176 |
except Exception as e:
|
| 177 |
logger.error(f"A critical error occurred: {e}", exc_info=True)
|