import os import asyncio import json import logging import random import re import time from typing import AsyncGenerator, Optional, Tuple, List, Dict from urllib.parse import quote_plus, urlparse from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from dotenv import load_dotenv import aiohttp from bs4 import BeautifulSoup from fake_useragent import UserAgent from collections import defaultdict # --- Configuration --- logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) load_dotenv() LLM_API_KEY = os.getenv("LLM_API_KEY") if not LLM_API_KEY: raise RuntimeError("LLM_API_KEY must be set in a .env file.") else: logging.info("LLM API Key loaded successfully.") # --- Constants & Headers --- LLM_API_URL = "https://api.typegpt.net/v1/chat/completions" LLM_MODEL = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8" MAX_SOURCES_TO_PROCESS = 10 # Increased to get more comprehensive results MAX_CONCURRENT_REQUESTS = 5 # Increased for faster processing SEARCH_TIMEOUT = 120 # 2 minutes for searching (adjustable) TOTAL_TIMEOUT = 180 # 3 minutes total REQUEST_DELAY = 1.0 # Shorter delay between requests USER_AGENT_ROTATION = True # Initialize fake user agent generator try: ua = UserAgent() except: class SimpleUA: def random(self): return random.choice([ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0" ]) ua = SimpleUA() LLM_HEADERS = { "Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json" } class DeepResearchRequest(BaseModel): query: str search_time: int = 120 # Default to 2 minutes app = FastAPI( title="AI Deep Research API", description="Provides comprehensive research reports from real web searches within 1-2 minutes.", version="3.0.0" ) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) def extract_json_from_llm_response(text: str) -> Optional[list]: """Extract JSON array from LLM response text.""" match = re.search(r'\[.*\]', text, re.DOTALL) if match: try: return json.loads(match.group(0)) except json.JSONDecodeError: return None return None async def get_real_user_agent() -> str: """Get a realistic user agent string.""" try: if isinstance(ua, UserAgent): return ua.random() return ua.random() # For our fallback class except: return "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36" def clean_url(url: str) -> str: """Clean up and normalize URLs.""" if not url: return "" # Handle DuckDuckGo redirect URLs if url.startswith('//duckduckgo.com/l/'): url = f"https:{url}" # Make it a proper URL try: # Extract the real URL from DuckDuckGo's redirect parsed = urlparse(url) query_params = parsed.query if 'uddg=' in query_params: # Extract the actual URL from the parameter match = re.search(r'uddg=([^&]+)', query_params) if match: encoded_url = match.group(1) try: url = quote_plus(encoded_url) # This might need better decoding # For simplicity, we'll just return the decoded URL # In production, you'd want to properly URL-decode this return encoded_url except: pass except: pass # Ensure URL has proper scheme if url.startswith('//'): url = 'https:' + url elif not url.startswith(('http://', 'https://')): url = 'https://' + url return url async def check_robots_txt(url: str) -> bool: """Check if scraping is allowed by robots.txt.""" try: domain_match = re.search(r'https?://([^/]+)', url) if not domain_match: return False domain = domain_match.group(1) robots_url = f"https://{domain}/robots.txt" async with aiohttp.ClientSession() as session: headers = {'User-Agent': await get_real_user_agent()} async with session.get(robots_url, headers=headers, timeout=5) as response: if response.status == 200: robots = await response.text() if "Disallow: /" in robots: return False # Check for specific path disallows path = re.sub(r'https?://[^/]+', '', url) if any(f"Disallow: {p}" in robots for p in [path, path.rstrip('/') + '/']): return False return True except Exception as e: logging.warning(f"Could not check robots.txt for {url}: {e}") return False async def fetch_search_results(query: str, max_results: int = 5) -> List[dict]: """ Perform a real search using DuckDuckGo's HTML interface with improved URL handling. """ try: search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}" headers = { "User-Agent": await get_real_user_agent(), "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Language": "en-US,en;q=0.5", "Referer": "https://duckduckgo.com/", "DNT": "1" } async with aiohttp.ClientSession() as session: async with session.get(search_url, headers=headers, timeout=10) as response: if response.status != 200: logging.warning(f"Search failed with status {response.status}") return [] html = await response.text() soup = BeautifulSoup(html, 'html.parser') results = [] # Try multiple selectors as DuckDuckGo may change their HTML structure for selector in ['.result__body', '.result__a', '.result']: if len(results) >= max_results: break for result in soup.select(selector)[:max_results]: try: title_elem = result.select_one('.result__title .result__a') or result.select_one('.result__a') if not title_elem: continue link = title_elem['href'] snippet_elem = result.select_one('.result__snippet') # Clean the URL clean_link = clean_url(link) # Skip if we couldn't get a clean URL if not clean_link or clean_link.startswith('javascript:'): continue # Get snippet if available snippet = snippet_elem.get_text(strip=True) if snippet_elem else "" results.append({ 'title': title_elem.get_text(strip=True), 'link': clean_link, 'snippet': snippet }) except Exception as e: logging.warning(f"Error parsing search result: {e}") continue logging.info(f"Found {len(results)} real search results for '{query}'") return results[:max_results] except Exception as e: logging.error(f"Real search failed: {e}") return [] async def process_web_source(session: aiohttp.ClientSession, source: dict, timeout: int = 15) -> Tuple[str, dict]: """ Process a real web source with improved content extraction and error handling. """ headers = {'User-Agent': await get_real_user_agent()} source_info = source.copy() source_info['link'] = clean_url(source['link']) # Ensure URL is clean # Skip if URL is invalid if not source_info['link'] or not source_info['link'].startswith(('http://', 'https://')): return source.get('snippet', ''), source_info # Check robots.txt first if not await check_robots_txt(source_info['link']): logging.info(f"Scraping disallowed by robots.txt for {source_info['link']}") return source.get('snippet', ''), source_info try: logging.info(f"Processing source: {source_info['link']}") start_time = time.time() # Skip non-HTML content if any(source_info['link'].lower().endswith(ext) for ext in ['.pdf', '.doc', '.docx', '.ppt', '.pptx', '.xls', '.xlsx']): logging.info(f"Skipping non-HTML content at {source_info['link']}") return source.get('snippet', ''), source_info # Add delay between requests to be polite await asyncio.sleep(REQUEST_DELAY) async with session.get(source_info['link'], headers=headers, timeout=timeout, ssl=False) as response: if response.status != 200: logging.warning(f"HTTP {response.status} for {source_info['link']}") return source.get('snippet', ''), source_info content_type = response.headers.get('Content-Type', '').lower() if 'text/html' not in content_type: logging.info(f"Non-HTML content at {source_info['link']} (type: {content_type})") return source.get('snippet', ''), source_info html = await response.text() soup = BeautifulSoup(html, "html.parser") # Remove unwanted elements for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside', 'iframe', 'noscript', 'form']): tag.decompose() # Try to find main content by common patterns selectors_to_try = [ 'main', 'article', '[role="main"]', '.main-content', '.content', '.article-body', '.post-content', '.entry-content', '#content', '#main', '.main', '.article' ] main_content = None for selector in selectors_to_try: main_content = soup.select_one(selector) if main_content: break if not main_content: # If no main content found, try to find the largest text block all_elements = soup.find_all() candidates = [el for el in all_elements if el.name not in ['script', 'style', 'nav', 'footer', 'header']] if candidates: candidates.sort(key=lambda x: len(x.get_text()), reverse=True) main_content = candidates[0] if candidates else soup if not main_content: main_content = soup.find('body') or soup # Clean up the content content = " ".join(main_content.stripped_strings) content = re.sub(r'\s+', ' ', content).strip() # If content is too short, try alternative extraction methods if len(content.split()) < 50 and len(html) > 10000: # Try extracting all paragraphs paras = soup.find_all('p') content = " ".join([p.get_text() for p in paras if p.get_text().strip()]) content = re.sub(r'\s+', ' ', content).strip() # If still too short, try getting all text nodes if len(content.split()) < 50: content = " ".join(soup.stripped_strings) content = re.sub(r'\s+', ' ', content).strip() # If content is still too short, try to extract from specific tags if len(content.split()) < 30: # Try to get content from divs with certain classes for tag in ['div', 'section', 'article']: for element in soup.find_all(tag): if len(element.get_text().split()) > 200: # If this element has substantial content content = " ".join(element.stripped_strings) content = re.sub(r'\s+', ' ', content).strip() if len(content.split()) >= 30: # If we got enough content break if len(content.split()) >= 30: break if len(content.split()) < 30: logging.warning(f"Very little content extracted from {source_info['link']}") return source.get('snippet', ''), source_info source_info['word_count'] = len(content.split()) source_info['processing_time'] = time.time() - start_time return content, source_info except asyncio.TimeoutError: logging.warning(f"Timeout while processing {source_info['link']}") return source.get('snippet', ''), source_info except Exception as e: logging.warning(f"Error processing {source_info['link']}: {str(e)[:200]}") return source.get('snippet', ''), source_info async def generate_research_plan(query: str, session: aiohttp.ClientSession) -> List[str]: """Generate a comprehensive research plan with sub-questions.""" try: plan_prompt = { "model": LLM_MODEL, "messages": [{ "role": "user", "content": f"""Generate 4-6 comprehensive sub-questions for in-depth research on '{query}'. Focus on key aspects that would provide a complete understanding of the topic. Your response MUST be ONLY the raw JSON array with no additional text. Example: ["What is the historical background of X?", "What are the current trends in X?"]""" }], "temperature": 0.7, "max_tokens": 300 } async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=30) as response: response.raise_for_status() result = await response.json() if isinstance(result, list): return result elif isinstance(result, dict) and 'choices' in result: content = result['choices'][0]['message']['content'] sub_questions = extract_json_from_llm_response(content) if sub_questions and isinstance(sub_questions, list): cleaned = [] for q in sub_questions: if isinstance(q, str) and q.strip(): cleaned_q = re.sub(r'^[^a-zA-Z0-9]*|[^a-zA-Z0-9]*$', '', q) if cleaned_q: cleaned.append(cleaned_q) return cleaned[:6] # Limit to 6 questions max # Fallback if we couldn't get good questions from LLM return [ f"What is {query} and its key features?", f"How does {query} compare to alternatives?", f"What are the current developments in {query}?", f"What are the main challenges with {query}?", f"What does the future hold for {query}?" ] except Exception as e: logging.error(f"Failed to generate research plan: {e}") return [ f"What is {query}?", f"What are the key aspects of {query}?", f"What are current trends in {query}?", f"What are the challenges with {query}?" ] async def continuous_search(query: str, search_time: int = 120) -> List[dict]: """ Perform continuous searching for better results within time constraints. """ start_time = time.time() all_results = [] seen_urls = set() # Generate multiple variations of the query query_variations = [ query, f"{query} comparison", f"{query} analysis", f"{query} review", f"{query} features", f"{query} vs alternatives" ] async with aiohttp.ClientSession() as session: while time.time() - start_time < search_time: # Shuffle the query variations to get diverse results random.shuffle(query_variations) for q in query_variations[:3]: # Only use first 3 variations in each iteration if time.time() - start_time >= search_time: break try: results = await fetch_search_results(q, max_results=5) for result in results: clean_link = clean_url(result['link']) if clean_link and clean_link not in seen_urls: seen_urls.add(clean_link) result['link'] = clean_link all_results.append(result) logging.info(f"Found new result: {result['title']}") # Small delay between searches await asyncio.sleep(1.0) # If we have enough unique results, we can stop early if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5: # Get more than we need for selection break except Exception as e: logging.error(f"Error during continuous search: {e}") await asyncio.sleep(2.0) # Wait a bit before trying again # Filter and sort results by relevance if all_results: # Simple relevance scoring (could be enhanced with more sophisticated methods) def score_result(result): # Score based on how many query terms appear in title/snippet query_terms = set(query.lower().split()) title = result['title'].lower() snippet = result['snippet'].lower() matches = 0 for term in query_terms: if term in title or term in snippet: matches += 1 # Also consider length of snippet as a proxy for content richness snippet_length = len(result['snippet'].split()) return matches * 10 + snippet_length # Sort by score, descending all_results.sort(key=lambda x: score_result(x), reverse=True) return all_results[:MAX_SOURCES_TO_PROCESS * 2] # Return more than we need for selection async def filter_and_select_sources(results: List[dict]) -> List[dict]: """ Filter and select the best sources from search results. """ if not results: return [] # Group by domain to ensure diversity domain_counts = defaultdict(int) domain_results = defaultdict(list) for result in results: domain = urlparse(result['link']).netloc domain_counts[domain] += 1 domain_results[domain].append(result) selected = [] # First pass: take the top result from each domain for domain, domain_res in domain_results.items(): if len(selected) >= MAX_SOURCES_TO_PROCESS: break # Take the best result from this domain (sorted by position in original results) if domain_res: selected.append(domain_res[0]) # Second pass: if we need more, take additional results from domains with good content if len(selected) < MAX_SOURCES_TO_PROCESS: # Calculate average snippet length as a proxy for content quality domain_quality = {} for domain, domain_res in domain_results.items(): avg_length = sum(len(r['snippet'].split()) for r in domain_res) / len(domain_res) domain_quality[domain] = avg_length # Sort domains by quality sorted_domains = sorted(domain_quality.items(), key=lambda x: x[1], reverse=True) # Add more results from high-quality domains for domain, _ in sorted_domains: if len(selected) >= MAX_SOURCES_TO_PROCESS: break for res in domain_results[domain]: if res not in selected: selected.append(res) if len(selected) >= MAX_SOURCES_TO_PROCESS: break # Final pass: if still need more, add remaining high-snippet-length results if len(selected) < MAX_SOURCES_TO_PROCESS: all_results_sorted = sorted(results, key=lambda x: len(x['snippet'].split()), reverse=True) for res in all_results_sorted: if res not in selected: selected.append(res) if len(selected) >= MAX_SOURCES_TO_PROCESS: break return selected[:MAX_SOURCES_TO_PROCESS] async def run_deep_research_stream(query: str, search_time: int = 120) -> AsyncGenerator[str, None]: def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n" start_time = time.time() processed_sources = 0 successful_sources = 0 total_tokens = 0 try: # Initialize the SSE stream with start message yield format_sse({ "event": "status", "data": f"Starting deep research on '{query}'. Search time limit: {search_time} seconds." }) async with aiohttp.ClientSession() as session: # Step 1: Generate research plan yield format_sse({"event": "status", "data": "Generating comprehensive research plan..."}) sub_questions = await generate_research_plan(query, session) yield format_sse({"event": "plan", "data": sub_questions}) # Step 2: Continuous search for better results yield format_sse({ "event": "status", "data": f"Performing continuous search for up to {search_time} seconds..." }) search_results = await continuous_search(query, search_time) yield format_sse({ "event": "status", "data": f"Found {len(search_results)} potential sources. Selecting the best ones..." }) if not search_results: yield format_sse({ "event": "error", "data": "No search results found. Check your query and try again." }) return # Select the best sources selected_sources = await filter_and_select_sources(search_results) yield format_sse({ "event": "status", "data": f"Selected {len(selected_sources)} high-quality sources to process." }) if not selected_sources: yield format_sse({ "event": "error", "data": "No valid sources found after filtering." }) return # Step 3: Process selected sources with concurrency control semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS) consolidated_context = "" all_sources_used = [] processing_errors = 0 async def process_with_semaphore(source): async with semaphore: return await process_web_source(session, source, timeout=20) # Process sources with progress updates processing_tasks = [] for i, source in enumerate(selected_sources): # Check if we're running out of time elapsed = time.time() - start_time if elapsed > TOTAL_TIMEOUT * 0.8: # Leave 20% of time for synthesis yield format_sse({ "event": "status", "data": f"Approaching time limit, stopping source processing at {i}/{len(selected_sources)}" }) break # Add delay between processing each source to be polite if i > 0: await asyncio.sleep(REQUEST_DELAY * 0.5) task = asyncio.create_task(process_with_semaphore(source)) processing_tasks.append(task) if (i + 1) % 2 == 0 or (i + 1) == len(selected_sources): yield format_sse({ "event": "status", "data": f"Processed {min(i+1, len(selected_sources))}/{len(selected_sources)} sources..." }) # Process completed tasks as they finish for future in asyncio.as_completed(processing_tasks): processed_sources += 1 content, source_info = await future if content and content.strip(): consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n" all_sources_used.append(source_info) successful_sources += 1 total_tokens += len(content.split()) # Rough token count else: processing_errors += 1 if not consolidated_context.strip(): yield format_sse({ "event": "error", "data": f"Failed to extract content from any sources. {processing_errors} errors occurred." }) return # Step 4: Synthesize comprehensive report time_remaining = max(0, TOTAL_TIMEOUT - (time.time() - start_time)) yield format_sse({ "event": "status", "data": f"Synthesizing comprehensive report from {successful_sources} sources..." }) max_output_tokens = min(2000, int(time_remaining * 6)) # More aggressive token count report_prompt = f"""Compose an in-depth analysis report on "{query}". Structure the report with these sections: 1. Introduction and Background 2. Key Features and Capabilities 3. Comparative Analysis with Alternatives 4. Current Developments and Trends 5. Challenges and Limitations 6. Future Outlook 7. Conclusion and Recommendations For each section, provide detailed analysis based on the source material. Include specific examples and data points from the sources when available. Compare and contrast different viewpoints from various sources. Use markdown formatting for headings, subheadings, lists, and emphasis. Cite sources where appropriate using inline citations like [1][2]. Available information from {successful_sources} sources: {consolidated_context[:20000]} # Increased context size Generate a comprehensive report of approximately {max_output_tokens//4} words. Focus on providing deep insights, analysis, and actionable information. """ report_payload = { "model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True, "max_tokens": max_output_tokens } # Stream the report generation async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response: response.raise_for_status() async for line in response.content: if time.time() - start_time > TOTAL_TIMEOUT: yield format_sse({ "event": "warning", "data": "Time limit reached, ending report generation early." }) break line_str = line.decode('utf-8').strip() if line_str.startswith('data:'): line_str = line_str[5:].strip() if line_str == "[DONE]": break try: chunk = json.loads(line_str) choices = chunk.get("choices") if choices and isinstance(choices, list) and len(choices) > 0: content = choices[0].get("delta", {}).get("content") if content: yield format_sse({"event": "chunk", "data": content}) except Exception as e: logging.warning(f"Error processing stream chunk: {e}") continue # Final status update duration = time.time() - start_time stats = { "total_time_seconds": round(duration), "sources_processed": processed_sources, "sources_successful": successful_sources, "estimated_tokens": total_tokens, "sources_used": len(all_sources_used) } yield format_sse({ "event": "status", "data": f"Research completed successfully in {duration:.1f} seconds." }) yield format_sse({"event": "stats", "data": stats}) yield format_sse({"event": "sources", "data": all_sources_used}) except asyncio.TimeoutError: yield format_sse({ "event": "error", "data": f"Research process timed out after {TOTAL_TIMEOUT} seconds." }) except Exception as e: logging.error(f"Critical error in research process: {e}", exc_info=True) yield format_sse({ "event": "error", "data": f"An unexpected error occurred: {str(e)[:200]}" }) finally: duration = time.time() - start_time yield format_sse({ "event": "complete", "data": f"Research process finished after {duration:.1f} seconds." }) @app.post("/deep-research", response_class=StreamingResponse) async def deep_research_endpoint(request: DeepResearchRequest): """Endpoint for deep research that streams SSE responses.""" if not request.query or len(request.query.strip()) < 3: raise HTTPException(status_code=400, detail="Query must be at least 3 characters long") search_time = min(max(request.search_time, 60), 180) # Clamp between 60 and 180 seconds return StreamingResponse( run_deep_research_stream(request.query.strip(), search_time), media_type="text/event-stream" ) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)