Spaces:
Running
Running
Yurii Paniv
commited on
Commit
·
42b6ec5
1
Parent(s):
2cbd7c6
Add train notebook
Browse files- wav2vec2/wav2vec_data.ipynb +0 -0
- wav2vec2/wav2vec_train.ipynb +1665 -0
wav2vec2/wav2vec_data.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
wav2vec2/wav2vec_train.ipynb
ADDED
|
@@ -0,0 +1,1665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"colab": {
|
| 8 |
+
"base_uri": "https://localhost:8080/"
|
| 9 |
+
},
|
| 10 |
+
"executionInfo": {
|
| 11 |
+
"elapsed": 829,
|
| 12 |
+
"status": "ok",
|
| 13 |
+
"timestamp": 1641588786523,
|
| 14 |
+
"user": {
|
| 15 |
+
"displayName": "Yurii Paniv",
|
| 16 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
| 17 |
+
"userId": "13095662915325887123"
|
| 18 |
+
},
|
| 19 |
+
"user_tz": -120
|
| 20 |
+
},
|
| 21 |
+
"id": "YELVqGxMxnbG",
|
| 22 |
+
"outputId": "876761c1-2e03-411b-e61b-07ac4ad61377"
|
| 23 |
+
},
|
| 24 |
+
"outputs": [
|
| 25 |
+
{
|
| 26 |
+
"name": "stdout",
|
| 27 |
+
"output_type": "stream",
|
| 28 |
+
"text": [
|
| 29 |
+
"Wed Dec 28 21:13:08 2022 \n",
|
| 30 |
+
"+-----------------------------------------------------------------------------+\n",
|
| 31 |
+
"| NVIDIA-SMI 515.86.01 Driver Version: 515.86.01 CUDA Version: 11.7 |\n",
|
| 32 |
+
"|-------------------------------+----------------------+----------------------+\n",
|
| 33 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
| 34 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
| 35 |
+
"| | | MIG M. |\n",
|
| 36 |
+
"|===============================+======================+======================|\n",
|
| 37 |
+
"| 0 NVIDIA GeForce ... Off | 00000000:0A:00.0 On | N/A |\n",
|
| 38 |
+
"| 0% 41C P8 24W / 390W | 1364MiB / 24576MiB | 0% Default |\n",
|
| 39 |
+
"| | | N/A |\n",
|
| 40 |
+
"+-------------------------------+----------------------+----------------------+\n",
|
| 41 |
+
" \n",
|
| 42 |
+
"+-----------------------------------------------------------------------------+\n",
|
| 43 |
+
"| Processes: |\n",
|
| 44 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
| 45 |
+
"| ID ID Usage |\n",
|
| 46 |
+
"|=============================================================================|\n",
|
| 47 |
+
"| 0 N/A N/A 1345 G /usr/lib/xorg/Xorg 528MiB |\n",
|
| 48 |
+
"| 0 N/A N/A 2100 G /usr/bin/kwalletd5 4MiB |\n",
|
| 49 |
+
"| 0 N/A N/A 2266 G ...ec/xdg-desktop-portal-kde 4MiB |\n",
|
| 50 |
+
"| 0 N/A N/A 2303 G /usr/bin/ksmserver 4MiB |\n",
|
| 51 |
+
"| 0 N/A N/A 2305 G /usr/bin/kded5 4MiB |\n",
|
| 52 |
+
"| 0 N/A N/A 2306 G /usr/bin/kwin_x11 102MiB |\n",
|
| 53 |
+
"| 0 N/A N/A 2367 G /usr/bin/plasmashell 133MiB |\n",
|
| 54 |
+
"| 0 N/A N/A 2396 G ...de-authentication-agent-1 4MiB |\n",
|
| 55 |
+
"| 0 N/A N/A 2443 G ...x-gnu/libexec/kdeconnectd 4MiB |\n",
|
| 56 |
+
"| 0 N/A N/A 2445 G .../usr/bin/telegram-desktop 7MiB |\n",
|
| 57 |
+
"| 0 N/A N/A 2459 G /usr/bin/kaccess 4MiB |\n",
|
| 58 |
+
"| 0 N/A N/A 2484 G ...1/usr/lib/firefox/firefox 214MiB |\n",
|
| 59 |
+
"| 0 N/A N/A 2499 G .../libexec/DiscoverNotifier 4MiB |\n",
|
| 60 |
+
"| 0 N/A N/A 2784 G /usr/bin/dolphin 4MiB |\n",
|
| 61 |
+
"| 0 N/A N/A 2917 G /usr/bin/dolphin 4MiB |\n",
|
| 62 |
+
"| 0 N/A N/A 2997 G /usr/bin/dolphin 4MiB |\n",
|
| 63 |
+
"| 0 N/A N/A 3138 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
| 64 |
+
"| 0 N/A N/A 3158 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
| 65 |
+
"| 0 N/A N/A 3663 G /usr/bin/dolphin 4MiB |\n",
|
| 66 |
+
"| 0 N/A N/A 3768 G /usr/bin/dolphin 4MiB |\n",
|
| 67 |
+
"| 0 N/A N/A 3908 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
| 68 |
+
"| 0 N/A N/A 3964 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
| 69 |
+
"| 0 N/A N/A 4610 G ...RendererForSitePerProcess 293MiB |\n",
|
| 70 |
+
"+-----------------------------------------------------------------------------+\n"
|
| 71 |
+
]
|
| 72 |
+
}
|
| 73 |
+
],
|
| 74 |
+
"source": [
|
| 75 |
+
"gpu_info = !nvidia-smi\n",
|
| 76 |
+
"gpu_info = '\\n'.join(gpu_info)\n",
|
| 77 |
+
"if gpu_info.find('failed') >= 0:\n",
|
| 78 |
+
" print('Not connected to a GPU')\n",
|
| 79 |
+
"else:\n",
|
| 80 |
+
" print(gpu_info)"
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"execution_count": 2,
|
| 86 |
+
"metadata": {
|
| 87 |
+
"colab": {
|
| 88 |
+
"base_uri": "https://localhost:8080/"
|
| 89 |
+
},
|
| 90 |
+
"executionInfo": {
|
| 91 |
+
"elapsed": 5334,
|
| 92 |
+
"status": "ok",
|
| 93 |
+
"timestamp": 1641588811766,
|
| 94 |
+
"user": {
|
| 95 |
+
"displayName": "Yurii Paniv",
|
| 96 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
| 97 |
+
"userId": "13095662915325887123"
|
| 98 |
+
},
|
| 99 |
+
"user_tz": -120
|
| 100 |
+
},
|
| 101 |
+
"id": "2MMXcWFFgCXU",
|
| 102 |
+
"outputId": "be9fd72e-4395-4cd0-ff87-631dad046e71"
|
| 103 |
+
},
|
| 104 |
+
"outputs": [],
|
| 105 |
+
"source": [
|
| 106 |
+
"from datasets import load_from_disk, load_metric, Audio\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"common_voice_train = load_from_disk(\"cached_dataset/cv_train\")\n",
|
| 109 |
+
"common_voice_test = load_from_disk(\"cached_dataset/cv_test\")"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "code",
|
| 114 |
+
"execution_count": 3,
|
| 115 |
+
"metadata": {
|
| 116 |
+
"id": "kAR0-2KLkopp"
|
| 117 |
+
},
|
| 118 |
+
"outputs": [],
|
| 119 |
+
"source": [
|
| 120 |
+
"from transformers import Wav2Vec2FeatureExtractor\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True)"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": 4,
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [
|
| 130 |
+
{
|
| 131 |
+
"name": "stderr",
|
| 132 |
+
"output_type": "stream",
|
| 133 |
+
"text": [
|
| 134 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
| 135 |
+
]
|
| 136 |
+
}
|
| 137 |
+
],
|
| 138 |
+
"source": [
|
| 139 |
+
"from transformers import Wav2Vec2CTCTokenizer\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(\"./\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\"|\")"
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"cell_type": "code",
|
| 146 |
+
"execution_count": 5,
|
| 147 |
+
"metadata": {
|
| 148 |
+
"id": "KYZtoW-tlZgl"
|
| 149 |
+
},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"from transformers import Wav2Vec2Processor\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": 6,
|
| 160 |
+
"metadata": {
|
| 161 |
+
"id": "tborvC9hx88e"
|
| 162 |
+
},
|
| 163 |
+
"outputs": [],
|
| 164 |
+
"source": [
|
| 165 |
+
"import torch\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"from dataclasses import dataclass, field\n",
|
| 168 |
+
"from typing import Any, Dict, List, Optional, Union\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"@dataclass\n",
|
| 171 |
+
"class DataCollatorCTCWithPadding:\n",
|
| 172 |
+
" \"\"\"\n",
|
| 173 |
+
" Data collator that will dynamically pad the inputs received.\n",
|
| 174 |
+
" Args:\n",
|
| 175 |
+
" processor (:class:`~transformers.Wav2Vec2Processor`)\n",
|
| 176 |
+
" The processor used for proccessing the data.\n",
|
| 177 |
+
" padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):\n",
|
| 178 |
+
" Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
|
| 179 |
+
" among:\n",
|
| 180 |
+
" * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single\n",
|
| 181 |
+
" sequence if provided).\n",
|
| 182 |
+
" * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the\n",
|
| 183 |
+
" maximum acceptable input length for the model if that argument is not provided.\n",
|
| 184 |
+
" * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of\n",
|
| 185 |
+
" different lengths).\n",
|
| 186 |
+
" \"\"\"\n",
|
| 187 |
+
"\n",
|
| 188 |
+
" processor: Wav2Vec2Processor\n",
|
| 189 |
+
" padding: Union[bool, str] = True\n",
|
| 190 |
+
"\n",
|
| 191 |
+
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
|
| 192 |
+
" # split inputs and labels since they have to be of different lenghts and need\n",
|
| 193 |
+
" # different padding methods\n",
|
| 194 |
+
" input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
|
| 195 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
| 196 |
+
"\n",
|
| 197 |
+
" batch = self.processor.pad(\n",
|
| 198 |
+
" input_features,\n",
|
| 199 |
+
" padding=self.padding,\n",
|
| 200 |
+
" return_tensors=\"pt\",\n",
|
| 201 |
+
" )\n",
|
| 202 |
+
" with self.processor.as_target_processor():\n",
|
| 203 |
+
" labels_batch = self.processor.pad(\n",
|
| 204 |
+
" label_features,\n",
|
| 205 |
+
" padding=self.padding,\n",
|
| 206 |
+
" return_tensors=\"pt\",\n",
|
| 207 |
+
" )\n",
|
| 208 |
+
"\n",
|
| 209 |
+
" # replace padding with -100 to ignore loss correctly\n",
|
| 210 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
|
| 211 |
+
"\n",
|
| 212 |
+
" batch[\"labels\"] = labels\n",
|
| 213 |
+
"\n",
|
| 214 |
+
" return batch"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": 7,
|
| 220 |
+
"metadata": {
|
| 221 |
+
"id": "lbQf5GuZyQ4_"
|
| 222 |
+
},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "code",
|
| 230 |
+
"execution_count": 8,
|
| 231 |
+
"metadata": {
|
| 232 |
+
"id": "9Xsux2gmyXso"
|
| 233 |
+
},
|
| 234 |
+
"outputs": [],
|
| 235 |
+
"source": [
|
| 236 |
+
"wer_metric = load_metric(\"wer\")\n",
|
| 237 |
+
"cer_metric = load_metric(\"cer\")\n",
|
| 238 |
+
"metrics = [wer_metric, cer_metric]"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"cell_type": "code",
|
| 243 |
+
"execution_count": 9,
|
| 244 |
+
"metadata": {
|
| 245 |
+
"id": "1XZ-kjweyTy_"
|
| 246 |
+
},
|
| 247 |
+
"outputs": [],
|
| 248 |
+
"source": [
|
| 249 |
+
"import numpy as np\n",
|
| 250 |
+
"\n",
|
| 251 |
+
"def compute_metrics(pred):\n",
|
| 252 |
+
" pred_logits = pred.predictions\n",
|
| 253 |
+
" pred_ids = np.argmax(pred_logits, axis=-1)\n",
|
| 254 |
+
"\n",
|
| 255 |
+
" pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
|
| 256 |
+
"\n",
|
| 257 |
+
" pred_str = processor.batch_decode(pred_ids)\n",
|
| 258 |
+
" # we do not want to group tokens when computing the metrics\n",
|
| 259 |
+
" label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
|
| 260 |
+
"\n",
|
| 261 |
+
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
| 262 |
+
" cer = cer_metric.compute(predictions=pred_str, references=label_str)\n",
|
| 263 |
+
"\n",
|
| 264 |
+
" return {\"wer\": wer, \"cer\": cer}"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"cell_type": "code",
|
| 269 |
+
"execution_count": 10,
|
| 270 |
+
"metadata": {
|
| 271 |
+
"colab": {
|
| 272 |
+
"base_uri": "https://localhost:8080/"
|
| 273 |
+
},
|
| 274 |
+
"executionInfo": {
|
| 275 |
+
"elapsed": 9496,
|
| 276 |
+
"status": "ok",
|
| 277 |
+
"timestamp": 1641588938616,
|
| 278 |
+
"user": {
|
| 279 |
+
"displayName": "Yurii Paniv",
|
| 280 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
| 281 |
+
"userId": "13095662915325887123"
|
| 282 |
+
},
|
| 283 |
+
"user_tz": -120
|
| 284 |
+
},
|
| 285 |
+
"id": "e7cqAWIayn6w",
|
| 286 |
+
"outputId": "b7b20ce9-e1b2-473f-8032-2a75f98dfa9e"
|
| 287 |
+
},
|
| 288 |
+
"outputs": [
|
| 289 |
+
{
|
| 290 |
+
"name": "stderr",
|
| 291 |
+
"output_type": "stream",
|
| 292 |
+
"text": [
|
| 293 |
+
"Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_q.weight', 'quantizer.weight_proj.weight', 'project_q.bias', 'quantizer.weight_proj.bias', 'project_hid.bias', 'project_hid.weight', 'quantizer.codevectors']\n",
|
| 294 |
+
"- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 295 |
+
"- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 296 |
+
"Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n",
|
| 297 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 298 |
+
]
|
| 299 |
+
}
|
| 300 |
+
],
|
| 301 |
+
"source": [
|
| 302 |
+
"from transformers import Wav2Vec2ForCTC\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"model = Wav2Vec2ForCTC.from_pretrained(\n",
|
| 305 |
+
" \"facebook/wav2vec2-xls-r-300m\", \n",
|
| 306 |
+
" attention_dropout=0.3,\n",
|
| 307 |
+
" hidden_dropout=0.3,\n",
|
| 308 |
+
" feat_proj_dropout=0.3,\n",
|
| 309 |
+
" mask_time_prob=0.05,\n",
|
| 310 |
+
" layerdrop=0.3,\n",
|
| 311 |
+
" ctc_loss_reduction=\"mean\", \n",
|
| 312 |
+
" pad_token_id=processor.tokenizer.pad_token_id,\n",
|
| 313 |
+
" vocab_size=len(processor.tokenizer),\n",
|
| 314 |
+
")"
|
| 315 |
+
]
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"cell_type": "code",
|
| 319 |
+
"execution_count": 11,
|
| 320 |
+
"metadata": {
|
| 321 |
+
"id": "oGI8zObtZ3V0"
|
| 322 |
+
},
|
| 323 |
+
"outputs": [
|
| 324 |
+
{
|
| 325 |
+
"name": "stderr",
|
| 326 |
+
"output_type": "stream",
|
| 327 |
+
"text": [
|
| 328 |
+
"/home/robinhad/Projects/unchanged/voice-recognition-ua/env/lib/python3.10/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:1618: FutureWarning: The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5.Please use the equivalent `freeze_feature_encoder` method instead.\n",
|
| 329 |
+
" warnings.warn(\n"
|
| 330 |
+
]
|
| 331 |
+
}
|
| 332 |
+
],
|
| 333 |
+
"source": [
|
| 334 |
+
"model.freeze_feature_extractor()"
|
| 335 |
+
]
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"cell_type": "code",
|
| 339 |
+
"execution_count": 12,
|
| 340 |
+
"metadata": {
|
| 341 |
+
"id": "KbeKSV7uzGPP"
|
| 342 |
+
},
|
| 343 |
+
"outputs": [],
|
| 344 |
+
"source": [
|
| 345 |
+
"from transformers import TrainingArguments\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"repo_name = \"wav2vec2-xls-r-base-uk\"\n",
|
| 348 |
+
"\n",
|
| 349 |
+
"training_args = TrainingArguments(\n",
|
| 350 |
+
" output_dir=repo_name,\n",
|
| 351 |
+
" group_by_length=True,\n",
|
| 352 |
+
" per_device_train_batch_size=24,\n",
|
| 353 |
+
" per_device_eval_batch_size=24, \n",
|
| 354 |
+
" gradient_accumulation_steps=6,\n",
|
| 355 |
+
" eval_accumulation_steps=6,\n",
|
| 356 |
+
" evaluation_strategy=\"epoch\",\n",
|
| 357 |
+
" save_strategy=\"epoch\",\n",
|
| 358 |
+
" logging_strategy=\"epoch\",\n",
|
| 359 |
+
" num_train_epochs=150,\n",
|
| 360 |
+
" gradient_checkpointing=True,\n",
|
| 361 |
+
" fp16=True,\n",
|
| 362 |
+
" #save_steps=1,\n",
|
| 363 |
+
" #eval_steps=1,\n",
|
| 364 |
+
" #logging_steps=1,\n",
|
| 365 |
+
" learning_rate=3e-4,\n",
|
| 366 |
+
" warmup_steps=500,\n",
|
| 367 |
+
" save_total_limit=2,\n",
|
| 368 |
+
" report_to=\"tensorboard\",\n",
|
| 369 |
+
" load_best_model_at_end=True,\n",
|
| 370 |
+
" metric_for_best_model=\"cer\",\n",
|
| 371 |
+
" greater_is_better=False\n",
|
| 372 |
+
")"
|
| 373 |
+
]
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"cell_type": "code",
|
| 377 |
+
"execution_count": 14,
|
| 378 |
+
"metadata": {
|
| 379 |
+
"colab": {
|
| 380 |
+
"base_uri": "https://localhost:8080/"
|
| 381 |
+
},
|
| 382 |
+
"executionInfo": {
|
| 383 |
+
"elapsed": 11063,
|
| 384 |
+
"status": "ok",
|
| 385 |
+
"timestamp": 1641588949674,
|
| 386 |
+
"user": {
|
| 387 |
+
"displayName": "Yurii Paniv",
|
| 388 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
| 389 |
+
"userId": "13095662915325887123"
|
| 390 |
+
},
|
| 391 |
+
"user_tz": -120
|
| 392 |
+
},
|
| 393 |
+
"id": "rY7vBmFCPFgC",
|
| 394 |
+
"outputId": "2e89d5ea-5b25-44bf-8492-a6220b0b1c38"
|
| 395 |
+
},
|
| 396 |
+
"outputs": [
|
| 397 |
+
{
|
| 398 |
+
"name": "stderr",
|
| 399 |
+
"output_type": "stream",
|
| 400 |
+
"text": [
|
| 401 |
+
"Using cuda_amp half precision backend\n"
|
| 402 |
+
]
|
| 403 |
+
}
|
| 404 |
+
],
|
| 405 |
+
"source": [
|
| 406 |
+
"from transformers import Trainer\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"trainer = Trainer(\n",
|
| 409 |
+
" model=model,\n",
|
| 410 |
+
" data_collator=data_collator,\n",
|
| 411 |
+
" args=training_args,\n",
|
| 412 |
+
" compute_metrics=compute_metrics,\n",
|
| 413 |
+
" train_dataset=common_voice_train,\n",
|
| 414 |
+
" eval_dataset=common_voice_test,\n",
|
| 415 |
+
" tokenizer=processor.feature_extractor,\n",
|
| 416 |
+
")"
|
| 417 |
+
]
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"cell_type": "code",
|
| 421 |
+
"execution_count": null,
|
| 422 |
+
"metadata": {
|
| 423 |
+
"colab": {
|
| 424 |
+
"base_uri": "https://localhost:8080/",
|
| 425 |
+
"height": 409
|
| 426 |
+
},
|
| 427 |
+
"id": "9fRr9TG5pGBl",
|
| 428 |
+
"outputId": "c2a7c797-326c-4bd2-b167-9d2f41d77def"
|
| 429 |
+
},
|
| 430 |
+
"outputs": [
|
| 431 |
+
{
|
| 432 |
+
"name": "stderr",
|
| 433 |
+
"output_type": "stream",
|
| 434 |
+
"text": [
|
| 435 |
+
"Loading model from wav2vec2-xls-r-base-uk/checkpoint-7505.\n",
|
| 436 |
+
"The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
| 437 |
+
"/home/robinhad/Projects/unchanged/voice-recognition-ua/env/lib/python3.10/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
| 438 |
+
" warnings.warn(\n",
|
| 439 |
+
"***** Running training *****\n",
|
| 440 |
+
" Num examples = 11463\n",
|
| 441 |
+
" Num Epochs = 150\n",
|
| 442 |
+
" Instantaneous batch size per device = 24\n",
|
| 443 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 144\n",
|
| 444 |
+
" Gradient Accumulation steps = 6\n",
|
| 445 |
+
" Total optimization steps = 11850\n",
|
| 446 |
+
" Continuing training from checkpoint, will skip to saved global_step\n",
|
| 447 |
+
" Continuing training from epoch 95\n",
|
| 448 |
+
" Continuing training from global step 7505\n",
|
| 449 |
+
" Will skip the first 95 epochs then the first 0 batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` flag to your launch command, but you will resume the training on data already seen by your model.\n"
|
| 450 |
+
]
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"data": {
|
| 454 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 455 |
+
"model_id": "d39c143147e7431a91cf50b54464cbee",
|
| 456 |
+
"version_major": 2,
|
| 457 |
+
"version_minor": 0
|
| 458 |
+
},
|
| 459 |
+
"text/plain": [
|
| 460 |
+
"0it [00:00, ?it/s]"
|
| 461 |
+
]
|
| 462 |
+
},
|
| 463 |
+
"metadata": {},
|
| 464 |
+
"output_type": "display_data"
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"data": {
|
| 468 |
+
"text/html": [
|
| 469 |
+
"\n",
|
| 470 |
+
" <div>\n",
|
| 471 |
+
" \n",
|
| 472 |
+
" <progress value='7910' max='11850' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 473 |
+
" [ 7910/11850 45:49 < 7:28:05, 0.15 it/s, Epoch 100.11/150]\n",
|
| 474 |
+
" </div>\n",
|
| 475 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 476 |
+
" <thead>\n",
|
| 477 |
+
" <tr style=\"text-align: left;\">\n",
|
| 478 |
+
" <th>Epoch</th>\n",
|
| 479 |
+
" <th>Training Loss</th>\n",
|
| 480 |
+
" <th>Validation Loss</th>\n",
|
| 481 |
+
" <th>Wer</th>\n",
|
| 482 |
+
" <th>Cer</th>\n",
|
| 483 |
+
" </tr>\n",
|
| 484 |
+
" </thead>\n",
|
| 485 |
+
" <tbody>\n",
|
| 486 |
+
" <tr>\n",
|
| 487 |
+
" <td>95</td>\n",
|
| 488 |
+
" <td>0.271200</td>\n",
|
| 489 |
+
" <td>0.596927</td>\n",
|
| 490 |
+
" <td>0.519565</td>\n",
|
| 491 |
+
" <td>0.128453</td>\n",
|
| 492 |
+
" </tr>\n",
|
| 493 |
+
" <tr>\n",
|
| 494 |
+
" <td>96</td>\n",
|
| 495 |
+
" <td>0.279300</td>\n",
|
| 496 |
+
" <td>0.595789</td>\n",
|
| 497 |
+
" <td>0.516518</td>\n",
|
| 498 |
+
" <td>0.128272</td>\n",
|
| 499 |
+
" </tr>\n",
|
| 500 |
+
" <tr>\n",
|
| 501 |
+
" <td>97</td>\n",
|
| 502 |
+
" <td>0.276800</td>\n",
|
| 503 |
+
" <td>0.623400</td>\n",
|
| 504 |
+
" <td>0.512582</td>\n",
|
| 505 |
+
" <td>0.127275</td>\n",
|
| 506 |
+
" </tr>\n",
|
| 507 |
+
" <tr>\n",
|
| 508 |
+
" <td>98</td>\n",
|
| 509 |
+
" <td>0.266000</td>\n",
|
| 510 |
+
" <td>0.617245</td>\n",
|
| 511 |
+
" <td>0.519181</td>\n",
|
| 512 |
+
" <td>0.130092</td>\n",
|
| 513 |
+
" </tr>\n",
|
| 514 |
+
" <tr>\n",
|
| 515 |
+
" <td>99</td>\n",
|
| 516 |
+
" <td>0.281600</td>\n",
|
| 517 |
+
" <td>0.606772</td>\n",
|
| 518 |
+
" <td>0.512401</td>\n",
|
| 519 |
+
" <td>0.128527</td>\n",
|
| 520 |
+
" </tr>\n",
|
| 521 |
+
" </tbody>\n",
|
| 522 |
+
"</table><p>"
|
| 523 |
+
],
|
| 524 |
+
"text/plain": [
|
| 525 |
+
"<IPython.core.display.HTML object>"
|
| 526 |
+
]
|
| 527 |
+
},
|
| 528 |
+
"metadata": {},
|
| 529 |
+
"output_type": "display_data"
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"name": "stderr",
|
| 533 |
+
"output_type": "stream",
|
| 534 |
+
"text": [
|
| 535 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
| 536 |
+
"***** Running Evaluation *****\n",
|
| 537 |
+
" Num examples = 6783\n",
|
| 538 |
+
" Batch size = 24\n",
|
| 539 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7584\n",
|
| 540 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7584/config.json\n",
|
| 541 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7584/pytorch_model.bin\n",
|
| 542 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7584/preprocessor_config.json\n",
|
| 543 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7505] due to args.save_total_limit\n",
|
| 544 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
| 545 |
+
"***** Running Evaluation *****\n",
|
| 546 |
+
" Num examples = 6783\n",
|
| 547 |
+
" Batch size = 24\n",
|
| 548 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7663\n",
|
| 549 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7663/config.json\n",
|
| 550 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7663/pytorch_model.bin\n",
|
| 551 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7663/preprocessor_config.json\n",
|
| 552 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7584] due to args.save_total_limit\n",
|
| 553 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
| 554 |
+
"***** Running Evaluation *****\n",
|
| 555 |
+
" Num examples = 6783\n",
|
| 556 |
+
" Batch size = 24\n",
|
| 557 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7742\n",
|
| 558 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7742/config.json\n",
|
| 559 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7742/pytorch_model.bin\n",
|
| 560 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7742/preprocessor_config.json\n",
|
| 561 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7663] due to args.save_total_limit\n",
|
| 562 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
| 563 |
+
"***** Running Evaluation *****\n",
|
| 564 |
+
" Num examples = 6783\n",
|
| 565 |
+
" Batch size = 24\n",
|
| 566 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7821\n",
|
| 567 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7821/config.json\n",
|
| 568 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7821/pytorch_model.bin\n",
|
| 569 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7821/preprocessor_config.json\n",
|
| 570 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7742] due to args.save_total_limit\n",
|
| 571 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
| 572 |
+
"***** Running Evaluation *****\n",
|
| 573 |
+
" Num examples = 6783\n",
|
| 574 |
+
" Batch size = 24\n",
|
| 575 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7900\n",
|
| 576 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7900/config.json\n",
|
| 577 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7900/pytorch_model.bin\n",
|
| 578 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7900/preprocessor_config.json\n",
|
| 579 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7821] due to args.save_total_limit\n"
|
| 580 |
+
]
|
| 581 |
+
}
|
| 582 |
+
],
|
| 583 |
+
"source": [
|
| 584 |
+
"trainer.train(resume_from_checkpoint=True)"
|
| 585 |
+
]
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"cell_type": "code",
|
| 589 |
+
"execution_count": null,
|
| 590 |
+
"metadata": {},
|
| 591 |
+
"outputs": [],
|
| 592 |
+
"source": [
|
| 593 |
+
"trainer.create_model_card()"
|
| 594 |
+
]
|
| 595 |
+
}
|
| 596 |
+
],
|
| 597 |
+
"metadata": {
|
| 598 |
+
"accelerator": "GPU",
|
| 599 |
+
"colab": {
|
| 600 |
+
"collapsed_sections": [],
|
| 601 |
+
"machine_shape": "hm",
|
| 602 |
+
"name": "Копія записника \"Fine-Tune XLS-R on Common Voice.ipynb\"",
|
| 603 |
+
"provenance": [
|
| 604 |
+
{
|
| 605 |
+
"file_id": "https://github.com/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLS_R_on_Common_Voice.ipynb",
|
| 606 |
+
"timestamp": 1641583715050
|
| 607 |
+
}
|
| 608 |
+
]
|
| 609 |
+
},
|
| 610 |
+
"kernelspec": {
|
| 611 |
+
"display_name": "Python 3 (ipykernel)",
|
| 612 |
+
"language": "python",
|
| 613 |
+
"name": "python3"
|
| 614 |
+
},
|
| 615 |
+
"language_info": {
|
| 616 |
+
"codemirror_mode": {
|
| 617 |
+
"name": "ipython",
|
| 618 |
+
"version": 3
|
| 619 |
+
},
|
| 620 |
+
"file_extension": ".py",
|
| 621 |
+
"mimetype": "text/x-python",
|
| 622 |
+
"name": "python",
|
| 623 |
+
"nbconvert_exporter": "python",
|
| 624 |
+
"pygments_lexer": "ipython3",
|
| 625 |
+
"version": "3.10.6"
|
| 626 |
+
},
|
| 627 |
+
"vscode": {
|
| 628 |
+
"interpreter": {
|
| 629 |
+
"hash": "a5cdd9abf8df3af0fd61fdb3838d6c6f2f66a9ba4bf4484f45cd88abf9f04fe9"
|
| 630 |
+
}
|
| 631 |
+
},
|
| 632 |
+
"widgets": {
|
| 633 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 634 |
+
"04ec68b059df4c628839c3ac29e2ebdd": {
|
| 635 |
+
"model_module": "@jupyter-widgets/controls",
|
| 636 |
+
"model_module_version": "1.5.0",
|
| 637 |
+
"model_name": "DescriptionStyleModel",
|
| 638 |
+
"state": {
|
| 639 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 640 |
+
"_model_module_version": "1.5.0",
|
| 641 |
+
"_model_name": "DescriptionStyleModel",
|
| 642 |
+
"_view_count": null,
|
| 643 |
+
"_view_module": "@jupyter-widgets/base",
|
| 644 |
+
"_view_module_version": "1.2.0",
|
| 645 |
+
"_view_name": "StyleView",
|
| 646 |
+
"description_width": ""
|
| 647 |
+
}
|
| 648 |
+
},
|
| 649 |
+
"05d8496d54174ae298c319b0194fc710": {
|
| 650 |
+
"model_module": "@jupyter-widgets/base",
|
| 651 |
+
"model_module_version": "1.2.0",
|
| 652 |
+
"model_name": "LayoutModel",
|
| 653 |
+
"state": {
|
| 654 |
+
"_model_module": "@jupyter-widgets/base",
|
| 655 |
+
"_model_module_version": "1.2.0",
|
| 656 |
+
"_model_name": "LayoutModel",
|
| 657 |
+
"_view_count": null,
|
| 658 |
+
"_view_module": "@jupyter-widgets/base",
|
| 659 |
+
"_view_module_version": "1.2.0",
|
| 660 |
+
"_view_name": "LayoutView",
|
| 661 |
+
"align_content": null,
|
| 662 |
+
"align_items": null,
|
| 663 |
+
"align_self": null,
|
| 664 |
+
"border": null,
|
| 665 |
+
"bottom": null,
|
| 666 |
+
"display": null,
|
| 667 |
+
"flex": null,
|
| 668 |
+
"flex_flow": null,
|
| 669 |
+
"grid_area": null,
|
| 670 |
+
"grid_auto_columns": null,
|
| 671 |
+
"grid_auto_flow": null,
|
| 672 |
+
"grid_auto_rows": null,
|
| 673 |
+
"grid_column": null,
|
| 674 |
+
"grid_gap": null,
|
| 675 |
+
"grid_row": null,
|
| 676 |
+
"grid_template_areas": null,
|
| 677 |
+
"grid_template_columns": null,
|
| 678 |
+
"grid_template_rows": null,
|
| 679 |
+
"height": null,
|
| 680 |
+
"justify_content": null,
|
| 681 |
+
"justify_items": null,
|
| 682 |
+
"left": null,
|
| 683 |
+
"margin": null,
|
| 684 |
+
"max_height": null,
|
| 685 |
+
"max_width": null,
|
| 686 |
+
"min_height": null,
|
| 687 |
+
"min_width": null,
|
| 688 |
+
"object_fit": null,
|
| 689 |
+
"object_position": null,
|
| 690 |
+
"order": null,
|
| 691 |
+
"overflow": null,
|
| 692 |
+
"overflow_x": null,
|
| 693 |
+
"overflow_y": null,
|
| 694 |
+
"padding": null,
|
| 695 |
+
"right": null,
|
| 696 |
+
"top": null,
|
| 697 |
+
"visibility": null,
|
| 698 |
+
"width": null
|
| 699 |
+
}
|
| 700 |
+
},
|
| 701 |
+
"116786d9364a4a57b521cddaabeda688": {
|
| 702 |
+
"model_module": "@jupyter-widgets/controls",
|
| 703 |
+
"model_module_version": "1.5.0",
|
| 704 |
+
"model_name": "HBoxModel",
|
| 705 |
+
"state": {
|
| 706 |
+
"_dom_classes": [],
|
| 707 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 708 |
+
"_model_module_version": "1.5.0",
|
| 709 |
+
"_model_name": "HBoxModel",
|
| 710 |
+
"_view_count": null,
|
| 711 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 712 |
+
"_view_module_version": "1.5.0",
|
| 713 |
+
"_view_name": "HBoxView",
|
| 714 |
+
"box_style": "",
|
| 715 |
+
"children": [
|
| 716 |
+
"IPY_MODEL_a1e2c04dc2cb45ea80bec125e3dbf56f",
|
| 717 |
+
"IPY_MODEL_b6d46d40efa14b21814f41531f5a2f41",
|
| 718 |
+
"IPY_MODEL_d8bf8dc5d6c84140a4e96c9c435b8f17"
|
| 719 |
+
],
|
| 720 |
+
"layout": "IPY_MODEL_9baa2f69aa9c4387bf1086a04ed78420"
|
| 721 |
+
}
|
| 722 |
+
},
|
| 723 |
+
"18bc63944343440f837cdff76db004fc": {
|
| 724 |
+
"model_module": "@jupyter-widgets/controls",
|
| 725 |
+
"model_module_version": "1.5.0",
|
| 726 |
+
"model_name": "HTMLModel",
|
| 727 |
+
"state": {
|
| 728 |
+
"_dom_classes": [],
|
| 729 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 730 |
+
"_model_module_version": "1.5.0",
|
| 731 |
+
"_model_name": "HTMLModel",
|
| 732 |
+
"_view_count": null,
|
| 733 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 734 |
+
"_view_module_version": "1.5.0",
|
| 735 |
+
"_view_name": "HTMLView",
|
| 736 |
+
"description": "",
|
| 737 |
+
"description_tooltip": null,
|
| 738 |
+
"layout": "IPY_MODEL_a4ae510b4f3845f891a796cf844fc2bb",
|
| 739 |
+
"placeholder": "",
|
| 740 |
+
"style": "IPY_MODEL_e6e50da6516847878309fdc5c463edb3",
|
| 741 |
+
"value": " 6962/6962 [01:46<00:00, 78.15ex/s]"
|
| 742 |
+
}
|
| 743 |
+
},
|
| 744 |
+
"1f3abdf2e0f6459da4179a94d691c4c4": {
|
| 745 |
+
"model_module": "@jupyter-widgets/controls",
|
| 746 |
+
"model_module_version": "1.5.0",
|
| 747 |
+
"model_name": "FloatProgressModel",
|
| 748 |
+
"state": {
|
| 749 |
+
"_dom_classes": [],
|
| 750 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 751 |
+
"_model_module_version": "1.5.0",
|
| 752 |
+
"_model_name": "FloatProgressModel",
|
| 753 |
+
"_view_count": null,
|
| 754 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 755 |
+
"_view_module_version": "1.5.0",
|
| 756 |
+
"_view_name": "ProgressView",
|
| 757 |
+
"bar_style": "success",
|
| 758 |
+
"description": "",
|
| 759 |
+
"description_tooltip": null,
|
| 760 |
+
"layout": "IPY_MODEL_c31a747e18df4b4aa4449a30e387448c",
|
| 761 |
+
"max": 1,
|
| 762 |
+
"min": 0,
|
| 763 |
+
"orientation": "horizontal",
|
| 764 |
+
"style": "IPY_MODEL_414efa8a08cd491cb78af8a95a151daa",
|
| 765 |
+
"value": 1
|
| 766 |
+
}
|
| 767 |
+
},
|
| 768 |
+
"22ba979142074f1d976e1a905544fd2d": {
|
| 769 |
+
"model_module": "@jupyter-widgets/base",
|
| 770 |
+
"model_module_version": "1.2.0",
|
| 771 |
+
"model_name": "LayoutModel",
|
| 772 |
+
"state": {
|
| 773 |
+
"_model_module": "@jupyter-widgets/base",
|
| 774 |
+
"_model_module_version": "1.2.0",
|
| 775 |
+
"_model_name": "LayoutModel",
|
| 776 |
+
"_view_count": null,
|
| 777 |
+
"_view_module": "@jupyter-widgets/base",
|
| 778 |
+
"_view_module_version": "1.2.0",
|
| 779 |
+
"_view_name": "LayoutView",
|
| 780 |
+
"align_content": null,
|
| 781 |
+
"align_items": null,
|
| 782 |
+
"align_self": null,
|
| 783 |
+
"border": null,
|
| 784 |
+
"bottom": null,
|
| 785 |
+
"display": null,
|
| 786 |
+
"flex": null,
|
| 787 |
+
"flex_flow": null,
|
| 788 |
+
"grid_area": null,
|
| 789 |
+
"grid_auto_columns": null,
|
| 790 |
+
"grid_auto_flow": null,
|
| 791 |
+
"grid_auto_rows": null,
|
| 792 |
+
"grid_column": null,
|
| 793 |
+
"grid_gap": null,
|
| 794 |
+
"grid_row": null,
|
| 795 |
+
"grid_template_areas": null,
|
| 796 |
+
"grid_template_columns": null,
|
| 797 |
+
"grid_template_rows": null,
|
| 798 |
+
"height": null,
|
| 799 |
+
"justify_content": null,
|
| 800 |
+
"justify_items": null,
|
| 801 |
+
"left": null,
|
| 802 |
+
"margin": null,
|
| 803 |
+
"max_height": null,
|
| 804 |
+
"max_width": null,
|
| 805 |
+
"min_height": null,
|
| 806 |
+
"min_width": null,
|
| 807 |
+
"object_fit": null,
|
| 808 |
+
"object_position": null,
|
| 809 |
+
"order": null,
|
| 810 |
+
"overflow": null,
|
| 811 |
+
"overflow_x": null,
|
| 812 |
+
"overflow_y": null,
|
| 813 |
+
"padding": null,
|
| 814 |
+
"right": null,
|
| 815 |
+
"top": null,
|
| 816 |
+
"visibility": null,
|
| 817 |
+
"width": null
|
| 818 |
+
}
|
| 819 |
+
},
|
| 820 |
+
"3dedffa30b774426bd474072a3a0d591": {
|
| 821 |
+
"model_module": "@jupyter-widgets/controls",
|
| 822 |
+
"model_module_version": "1.5.0",
|
| 823 |
+
"model_name": "DescriptionStyleModel",
|
| 824 |
+
"state": {
|
| 825 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 826 |
+
"_model_module_version": "1.5.0",
|
| 827 |
+
"_model_name": "DescriptionStyleModel",
|
| 828 |
+
"_view_count": null,
|
| 829 |
+
"_view_module": "@jupyter-widgets/base",
|
| 830 |
+
"_view_module_version": "1.2.0",
|
| 831 |
+
"_view_name": "StyleView",
|
| 832 |
+
"description_width": ""
|
| 833 |
+
}
|
| 834 |
+
},
|
| 835 |
+
"414efa8a08cd491cb78af8a95a151daa": {
|
| 836 |
+
"model_module": "@jupyter-widgets/controls",
|
| 837 |
+
"model_module_version": "1.5.0",
|
| 838 |
+
"model_name": "ProgressStyleModel",
|
| 839 |
+
"state": {
|
| 840 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 841 |
+
"_model_module_version": "1.5.0",
|
| 842 |
+
"_model_name": "ProgressStyleModel",
|
| 843 |
+
"_view_count": null,
|
| 844 |
+
"_view_module": "@jupyter-widgets/base",
|
| 845 |
+
"_view_module_version": "1.2.0",
|
| 846 |
+
"_view_name": "StyleView",
|
| 847 |
+
"bar_color": null,
|
| 848 |
+
"description_width": ""
|
| 849 |
+
}
|
| 850 |
+
},
|
| 851 |
+
"427056895c674c428400bee0f5b43995": {
|
| 852 |
+
"model_module": "@jupyter-widgets/base",
|
| 853 |
+
"model_module_version": "1.2.0",
|
| 854 |
+
"model_name": "LayoutModel",
|
| 855 |
+
"state": {
|
| 856 |
+
"_model_module": "@jupyter-widgets/base",
|
| 857 |
+
"_model_module_version": "1.2.0",
|
| 858 |
+
"_model_name": "LayoutModel",
|
| 859 |
+
"_view_count": null,
|
| 860 |
+
"_view_module": "@jupyter-widgets/base",
|
| 861 |
+
"_view_module_version": "1.2.0",
|
| 862 |
+
"_view_name": "LayoutView",
|
| 863 |
+
"align_content": null,
|
| 864 |
+
"align_items": null,
|
| 865 |
+
"align_self": null,
|
| 866 |
+
"border": null,
|
| 867 |
+
"bottom": null,
|
| 868 |
+
"display": null,
|
| 869 |
+
"flex": null,
|
| 870 |
+
"flex_flow": null,
|
| 871 |
+
"grid_area": null,
|
| 872 |
+
"grid_auto_columns": null,
|
| 873 |
+
"grid_auto_flow": null,
|
| 874 |
+
"grid_auto_rows": null,
|
| 875 |
+
"grid_column": null,
|
| 876 |
+
"grid_gap": null,
|
| 877 |
+
"grid_row": null,
|
| 878 |
+
"grid_template_areas": null,
|
| 879 |
+
"grid_template_columns": null,
|
| 880 |
+
"grid_template_rows": null,
|
| 881 |
+
"height": null,
|
| 882 |
+
"justify_content": null,
|
| 883 |
+
"justify_items": null,
|
| 884 |
+
"left": null,
|
| 885 |
+
"margin": null,
|
| 886 |
+
"max_height": null,
|
| 887 |
+
"max_width": null,
|
| 888 |
+
"min_height": null,
|
| 889 |
+
"min_width": null,
|
| 890 |
+
"object_fit": null,
|
| 891 |
+
"object_position": null,
|
| 892 |
+
"order": null,
|
| 893 |
+
"overflow": null,
|
| 894 |
+
"overflow_x": null,
|
| 895 |
+
"overflow_y": null,
|
| 896 |
+
"padding": null,
|
| 897 |
+
"right": null,
|
| 898 |
+
"top": null,
|
| 899 |
+
"visibility": null,
|
| 900 |
+
"width": null
|
| 901 |
+
}
|
| 902 |
+
},
|
| 903 |
+
"445c84e1e2e541f2a54fb989def386ae": {
|
| 904 |
+
"model_module": "@jupyter-widgets/base",
|
| 905 |
+
"model_module_version": "1.2.0",
|
| 906 |
+
"model_name": "LayoutModel",
|
| 907 |
+
"state": {
|
| 908 |
+
"_model_module": "@jupyter-widgets/base",
|
| 909 |
+
"_model_module_version": "1.2.0",
|
| 910 |
+
"_model_name": "LayoutModel",
|
| 911 |
+
"_view_count": null,
|
| 912 |
+
"_view_module": "@jupyter-widgets/base",
|
| 913 |
+
"_view_module_version": "1.2.0",
|
| 914 |
+
"_view_name": "LayoutView",
|
| 915 |
+
"align_content": null,
|
| 916 |
+
"align_items": null,
|
| 917 |
+
"align_self": null,
|
| 918 |
+
"border": null,
|
| 919 |
+
"bottom": null,
|
| 920 |
+
"display": null,
|
| 921 |
+
"flex": null,
|
| 922 |
+
"flex_flow": null,
|
| 923 |
+
"grid_area": null,
|
| 924 |
+
"grid_auto_columns": null,
|
| 925 |
+
"grid_auto_flow": null,
|
| 926 |
+
"grid_auto_rows": null,
|
| 927 |
+
"grid_column": null,
|
| 928 |
+
"grid_gap": null,
|
| 929 |
+
"grid_row": null,
|
| 930 |
+
"grid_template_areas": null,
|
| 931 |
+
"grid_template_columns": null,
|
| 932 |
+
"grid_template_rows": null,
|
| 933 |
+
"height": null,
|
| 934 |
+
"justify_content": null,
|
| 935 |
+
"justify_items": null,
|
| 936 |
+
"left": null,
|
| 937 |
+
"margin": null,
|
| 938 |
+
"max_height": null,
|
| 939 |
+
"max_width": null,
|
| 940 |
+
"min_height": null,
|
| 941 |
+
"min_width": null,
|
| 942 |
+
"object_fit": null,
|
| 943 |
+
"object_position": null,
|
| 944 |
+
"order": null,
|
| 945 |
+
"overflow": null,
|
| 946 |
+
"overflow_x": null,
|
| 947 |
+
"overflow_y": null,
|
| 948 |
+
"padding": null,
|
| 949 |
+
"right": null,
|
| 950 |
+
"top": null,
|
| 951 |
+
"visibility": null,
|
| 952 |
+
"width": null
|
| 953 |
+
}
|
| 954 |
+
},
|
| 955 |
+
"48c60be3ca9349a295b83f65769c7f27": {
|
| 956 |
+
"model_module": "@jupyter-widgets/controls",
|
| 957 |
+
"model_module_version": "1.5.0",
|
| 958 |
+
"model_name": "HTMLModel",
|
| 959 |
+
"state": {
|
| 960 |
+
"_dom_classes": [],
|
| 961 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 962 |
+
"_model_module_version": "1.5.0",
|
| 963 |
+
"_model_name": "HTMLModel",
|
| 964 |
+
"_view_count": null,
|
| 965 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 966 |
+
"_view_module_version": "1.5.0",
|
| 967 |
+
"_view_name": "HTMLView",
|
| 968 |
+
"description": "",
|
| 969 |
+
"description_tooltip": null,
|
| 970 |
+
"layout": "IPY_MODEL_05d8496d54174ae298c319b0194fc710",
|
| 971 |
+
"placeholder": "",
|
| 972 |
+
"style": "IPY_MODEL_3dedffa30b774426bd474072a3a0d591",
|
| 973 |
+
"value": " 1/1 [00:00<00:00, 11.09ba/s]"
|
| 974 |
+
}
|
| 975 |
+
},
|
| 976 |
+
"5815ae1348994bfebba4a8e968489a96": {
|
| 977 |
+
"model_module": "@jupyter-widgets/controls",
|
| 978 |
+
"model_module_version": "1.5.0",
|
| 979 |
+
"model_name": "DescriptionStyleModel",
|
| 980 |
+
"state": {
|
| 981 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 982 |
+
"_model_module_version": "1.5.0",
|
| 983 |
+
"_model_name": "DescriptionStyleModel",
|
| 984 |
+
"_view_count": null,
|
| 985 |
+
"_view_module": "@jupyter-widgets/base",
|
| 986 |
+
"_view_module_version": "1.2.0",
|
| 987 |
+
"_view_name": "StyleView",
|
| 988 |
+
"description_width": ""
|
| 989 |
+
}
|
| 990 |
+
},
|
| 991 |
+
"5c2a7fea8c434d51ada69a0854b88baf": {
|
| 992 |
+
"model_module": "@jupyter-widgets/base",
|
| 993 |
+
"model_module_version": "1.2.0",
|
| 994 |
+
"model_name": "LayoutModel",
|
| 995 |
+
"state": {
|
| 996 |
+
"_model_module": "@jupyter-widgets/base",
|
| 997 |
+
"_model_module_version": "1.2.0",
|
| 998 |
+
"_model_name": "LayoutModel",
|
| 999 |
+
"_view_count": null,
|
| 1000 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1001 |
+
"_view_module_version": "1.2.0",
|
| 1002 |
+
"_view_name": "LayoutView",
|
| 1003 |
+
"align_content": null,
|
| 1004 |
+
"align_items": null,
|
| 1005 |
+
"align_self": null,
|
| 1006 |
+
"border": null,
|
| 1007 |
+
"bottom": null,
|
| 1008 |
+
"display": null,
|
| 1009 |
+
"flex": null,
|
| 1010 |
+
"flex_flow": null,
|
| 1011 |
+
"grid_area": null,
|
| 1012 |
+
"grid_auto_columns": null,
|
| 1013 |
+
"grid_auto_flow": null,
|
| 1014 |
+
"grid_auto_rows": null,
|
| 1015 |
+
"grid_column": null,
|
| 1016 |
+
"grid_gap": null,
|
| 1017 |
+
"grid_row": null,
|
| 1018 |
+
"grid_template_areas": null,
|
| 1019 |
+
"grid_template_columns": null,
|
| 1020 |
+
"grid_template_rows": null,
|
| 1021 |
+
"height": null,
|
| 1022 |
+
"justify_content": null,
|
| 1023 |
+
"justify_items": null,
|
| 1024 |
+
"left": null,
|
| 1025 |
+
"margin": null,
|
| 1026 |
+
"max_height": null,
|
| 1027 |
+
"max_width": null,
|
| 1028 |
+
"min_height": null,
|
| 1029 |
+
"min_width": null,
|
| 1030 |
+
"object_fit": null,
|
| 1031 |
+
"object_position": null,
|
| 1032 |
+
"order": null,
|
| 1033 |
+
"overflow": null,
|
| 1034 |
+
"overflow_x": null,
|
| 1035 |
+
"overflow_y": null,
|
| 1036 |
+
"padding": null,
|
| 1037 |
+
"right": null,
|
| 1038 |
+
"top": null,
|
| 1039 |
+
"visibility": null,
|
| 1040 |
+
"width": null
|
| 1041 |
+
}
|
| 1042 |
+
},
|
| 1043 |
+
"68502fb433564eee8dfdf272ed7e4f56": {
|
| 1044 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1045 |
+
"model_module_version": "1.5.0",
|
| 1046 |
+
"model_name": "HTMLModel",
|
| 1047 |
+
"state": {
|
| 1048 |
+
"_dom_classes": [],
|
| 1049 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1050 |
+
"_model_module_version": "1.5.0",
|
| 1051 |
+
"_model_name": "HTMLModel",
|
| 1052 |
+
"_view_count": null,
|
| 1053 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1054 |
+
"_view_module_version": "1.5.0",
|
| 1055 |
+
"_view_name": "HTMLView",
|
| 1056 |
+
"description": "",
|
| 1057 |
+
"description_tooltip": null,
|
| 1058 |
+
"layout": "IPY_MODEL_5c2a7fea8c434d51ada69a0854b88baf",
|
| 1059 |
+
"placeholder": "",
|
| 1060 |
+
"style": "IPY_MODEL_6c80bd8a8fe14a5989fe27445c14650f",
|
| 1061 |
+
"value": "100%"
|
| 1062 |
+
}
|
| 1063 |
+
},
|
| 1064 |
+
"6c80bd8a8fe14a5989fe27445c14650f": {
|
| 1065 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1066 |
+
"model_module_version": "1.5.0",
|
| 1067 |
+
"model_name": "DescriptionStyleModel",
|
| 1068 |
+
"state": {
|
| 1069 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1070 |
+
"_model_module_version": "1.5.0",
|
| 1071 |
+
"_model_name": "DescriptionStyleModel",
|
| 1072 |
+
"_view_count": null,
|
| 1073 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1074 |
+
"_view_module_version": "1.2.0",
|
| 1075 |
+
"_view_name": "StyleView",
|
| 1076 |
+
"description_width": ""
|
| 1077 |
+
}
|
| 1078 |
+
},
|
| 1079 |
+
"77f1a51099b24831ad8b2be3d2dc833a": {
|
| 1080 |
+
"model_module": "@jupyter-widgets/base",
|
| 1081 |
+
"model_module_version": "1.2.0",
|
| 1082 |
+
"model_name": "LayoutModel",
|
| 1083 |
+
"state": {
|
| 1084 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1085 |
+
"_model_module_version": "1.2.0",
|
| 1086 |
+
"_model_name": "LayoutModel",
|
| 1087 |
+
"_view_count": null,
|
| 1088 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1089 |
+
"_view_module_version": "1.2.0",
|
| 1090 |
+
"_view_name": "LayoutView",
|
| 1091 |
+
"align_content": null,
|
| 1092 |
+
"align_items": null,
|
| 1093 |
+
"align_self": null,
|
| 1094 |
+
"border": null,
|
| 1095 |
+
"bottom": null,
|
| 1096 |
+
"display": null,
|
| 1097 |
+
"flex": null,
|
| 1098 |
+
"flex_flow": null,
|
| 1099 |
+
"grid_area": null,
|
| 1100 |
+
"grid_auto_columns": null,
|
| 1101 |
+
"grid_auto_flow": null,
|
| 1102 |
+
"grid_auto_rows": null,
|
| 1103 |
+
"grid_column": null,
|
| 1104 |
+
"grid_gap": null,
|
| 1105 |
+
"grid_row": null,
|
| 1106 |
+
"grid_template_areas": null,
|
| 1107 |
+
"grid_template_columns": null,
|
| 1108 |
+
"grid_template_rows": null,
|
| 1109 |
+
"height": null,
|
| 1110 |
+
"justify_content": null,
|
| 1111 |
+
"justify_items": null,
|
| 1112 |
+
"left": null,
|
| 1113 |
+
"margin": null,
|
| 1114 |
+
"max_height": null,
|
| 1115 |
+
"max_width": null,
|
| 1116 |
+
"min_height": null,
|
| 1117 |
+
"min_width": null,
|
| 1118 |
+
"object_fit": null,
|
| 1119 |
+
"object_position": null,
|
| 1120 |
+
"order": null,
|
| 1121 |
+
"overflow": null,
|
| 1122 |
+
"overflow_x": null,
|
| 1123 |
+
"overflow_y": null,
|
| 1124 |
+
"padding": null,
|
| 1125 |
+
"right": null,
|
| 1126 |
+
"top": null,
|
| 1127 |
+
"visibility": null,
|
| 1128 |
+
"width": null
|
| 1129 |
+
}
|
| 1130 |
+
},
|
| 1131 |
+
"8b6b7f28751c45c8869aa86eb2a0ab26": {
|
| 1132 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1133 |
+
"model_module_version": "1.5.0",
|
| 1134 |
+
"model_name": "HBoxModel",
|
| 1135 |
+
"state": {
|
| 1136 |
+
"_dom_classes": [],
|
| 1137 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1138 |
+
"_model_module_version": "1.5.0",
|
| 1139 |
+
"_model_name": "HBoxModel",
|
| 1140 |
+
"_view_count": null,
|
| 1141 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1142 |
+
"_view_module_version": "1.5.0",
|
| 1143 |
+
"_view_name": "HBoxView",
|
| 1144 |
+
"box_style": "",
|
| 1145 |
+
"children": [
|
| 1146 |
+
"IPY_MODEL_68502fb433564eee8dfdf272ed7e4f56",
|
| 1147 |
+
"IPY_MODEL_1f3abdf2e0f6459da4179a94d691c4c4",
|
| 1148 |
+
"IPY_MODEL_48c60be3ca9349a295b83f65769c7f27"
|
| 1149 |
+
],
|
| 1150 |
+
"layout": "IPY_MODEL_445c84e1e2e541f2a54fb989def386ae"
|
| 1151 |
+
}
|
| 1152 |
+
},
|
| 1153 |
+
"9baa2f69aa9c4387bf1086a04ed78420": {
|
| 1154 |
+
"model_module": "@jupyter-widgets/base",
|
| 1155 |
+
"model_module_version": "1.2.0",
|
| 1156 |
+
"model_name": "LayoutModel",
|
| 1157 |
+
"state": {
|
| 1158 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1159 |
+
"_model_module_version": "1.2.0",
|
| 1160 |
+
"_model_name": "LayoutModel",
|
| 1161 |
+
"_view_count": null,
|
| 1162 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1163 |
+
"_view_module_version": "1.2.0",
|
| 1164 |
+
"_view_name": "LayoutView",
|
| 1165 |
+
"align_content": null,
|
| 1166 |
+
"align_items": null,
|
| 1167 |
+
"align_self": null,
|
| 1168 |
+
"border": null,
|
| 1169 |
+
"bottom": null,
|
| 1170 |
+
"display": null,
|
| 1171 |
+
"flex": null,
|
| 1172 |
+
"flex_flow": null,
|
| 1173 |
+
"grid_area": null,
|
| 1174 |
+
"grid_auto_columns": null,
|
| 1175 |
+
"grid_auto_flow": null,
|
| 1176 |
+
"grid_auto_rows": null,
|
| 1177 |
+
"grid_column": null,
|
| 1178 |
+
"grid_gap": null,
|
| 1179 |
+
"grid_row": null,
|
| 1180 |
+
"grid_template_areas": null,
|
| 1181 |
+
"grid_template_columns": null,
|
| 1182 |
+
"grid_template_rows": null,
|
| 1183 |
+
"height": null,
|
| 1184 |
+
"justify_content": null,
|
| 1185 |
+
"justify_items": null,
|
| 1186 |
+
"left": null,
|
| 1187 |
+
"margin": null,
|
| 1188 |
+
"max_height": null,
|
| 1189 |
+
"max_width": null,
|
| 1190 |
+
"min_height": null,
|
| 1191 |
+
"min_width": null,
|
| 1192 |
+
"object_fit": null,
|
| 1193 |
+
"object_position": null,
|
| 1194 |
+
"order": null,
|
| 1195 |
+
"overflow": null,
|
| 1196 |
+
"overflow_x": null,
|
| 1197 |
+
"overflow_y": null,
|
| 1198 |
+
"padding": null,
|
| 1199 |
+
"right": null,
|
| 1200 |
+
"top": null,
|
| 1201 |
+
"visibility": null,
|
| 1202 |
+
"width": null
|
| 1203 |
+
}
|
| 1204 |
+
},
|
| 1205 |
+
"9c875952cdd649a5bab87de9bb3f5200": {
|
| 1206 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1207 |
+
"model_module_version": "1.5.0",
|
| 1208 |
+
"model_name": "DescriptionStyleModel",
|
| 1209 |
+
"state": {
|
| 1210 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1211 |
+
"_model_module_version": "1.5.0",
|
| 1212 |
+
"_model_name": "DescriptionStyleModel",
|
| 1213 |
+
"_view_count": null,
|
| 1214 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1215 |
+
"_view_module_version": "1.2.0",
|
| 1216 |
+
"_view_name": "StyleView",
|
| 1217 |
+
"description_width": ""
|
| 1218 |
+
}
|
| 1219 |
+
},
|
| 1220 |
+
"a1e2c04dc2cb45ea80bec125e3dbf56f": {
|
| 1221 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1222 |
+
"model_module_version": "1.5.0",
|
| 1223 |
+
"model_name": "HTMLModel",
|
| 1224 |
+
"state": {
|
| 1225 |
+
"_dom_classes": [],
|
| 1226 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1227 |
+
"_model_module_version": "1.5.0",
|
| 1228 |
+
"_model_name": "HTMLModel",
|
| 1229 |
+
"_view_count": null,
|
| 1230 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1231 |
+
"_view_module_version": "1.5.0",
|
| 1232 |
+
"_view_name": "HTMLView",
|
| 1233 |
+
"description": "",
|
| 1234 |
+
"description_tooltip": null,
|
| 1235 |
+
"layout": "IPY_MODEL_427056895c674c428400bee0f5b43995",
|
| 1236 |
+
"placeholder": "",
|
| 1237 |
+
"style": "IPY_MODEL_04ec68b059df4c628839c3ac29e2ebdd",
|
| 1238 |
+
"value": "100%"
|
| 1239 |
+
}
|
| 1240 |
+
},
|
| 1241 |
+
"a29f88f174f8499082fbb36a36c47fa4": {
|
| 1242 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1243 |
+
"model_module_version": "1.5.0",
|
| 1244 |
+
"model_name": "HBoxModel",
|
| 1245 |
+
"state": {
|
| 1246 |
+
"_dom_classes": [],
|
| 1247 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1248 |
+
"_model_module_version": "1.5.0",
|
| 1249 |
+
"_model_name": "HBoxModel",
|
| 1250 |
+
"_view_count": null,
|
| 1251 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1252 |
+
"_view_module_version": "1.5.0",
|
| 1253 |
+
"_view_name": "HBoxView",
|
| 1254 |
+
"box_style": "",
|
| 1255 |
+
"children": [
|
| 1256 |
+
"IPY_MODEL_d45747150d0b434593a3a7c98399599a",
|
| 1257 |
+
"IPY_MODEL_ea73f7deb1c643f7b81de7fb7acaaf1b",
|
| 1258 |
+
"IPY_MODEL_18bc63944343440f837cdff76db004fc"
|
| 1259 |
+
],
|
| 1260 |
+
"layout": "IPY_MODEL_efc3bc0c48124ebeb79d245216eaf0fe"
|
| 1261 |
+
}
|
| 1262 |
+
},
|
| 1263 |
+
"a4ae510b4f3845f891a796cf844fc2bb": {
|
| 1264 |
+
"model_module": "@jupyter-widgets/base",
|
| 1265 |
+
"model_module_version": "1.2.0",
|
| 1266 |
+
"model_name": "LayoutModel",
|
| 1267 |
+
"state": {
|
| 1268 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1269 |
+
"_model_module_version": "1.2.0",
|
| 1270 |
+
"_model_name": "LayoutModel",
|
| 1271 |
+
"_view_count": null,
|
| 1272 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1273 |
+
"_view_module_version": "1.2.0",
|
| 1274 |
+
"_view_name": "LayoutView",
|
| 1275 |
+
"align_content": null,
|
| 1276 |
+
"align_items": null,
|
| 1277 |
+
"align_self": null,
|
| 1278 |
+
"border": null,
|
| 1279 |
+
"bottom": null,
|
| 1280 |
+
"display": null,
|
| 1281 |
+
"flex": null,
|
| 1282 |
+
"flex_flow": null,
|
| 1283 |
+
"grid_area": null,
|
| 1284 |
+
"grid_auto_columns": null,
|
| 1285 |
+
"grid_auto_flow": null,
|
| 1286 |
+
"grid_auto_rows": null,
|
| 1287 |
+
"grid_column": null,
|
| 1288 |
+
"grid_gap": null,
|
| 1289 |
+
"grid_row": null,
|
| 1290 |
+
"grid_template_areas": null,
|
| 1291 |
+
"grid_template_columns": null,
|
| 1292 |
+
"grid_template_rows": null,
|
| 1293 |
+
"height": null,
|
| 1294 |
+
"justify_content": null,
|
| 1295 |
+
"justify_items": null,
|
| 1296 |
+
"left": null,
|
| 1297 |
+
"margin": null,
|
| 1298 |
+
"max_height": null,
|
| 1299 |
+
"max_width": null,
|
| 1300 |
+
"min_height": null,
|
| 1301 |
+
"min_width": null,
|
| 1302 |
+
"object_fit": null,
|
| 1303 |
+
"object_position": null,
|
| 1304 |
+
"order": null,
|
| 1305 |
+
"overflow": null,
|
| 1306 |
+
"overflow_x": null,
|
| 1307 |
+
"overflow_y": null,
|
| 1308 |
+
"padding": null,
|
| 1309 |
+
"right": null,
|
| 1310 |
+
"top": null,
|
| 1311 |
+
"visibility": null,
|
| 1312 |
+
"width": null
|
| 1313 |
+
}
|
| 1314 |
+
},
|
| 1315 |
+
"aa329cb93df44a6da6012c7cc49d7489": {
|
| 1316 |
+
"model_module": "@jupyter-widgets/base",
|
| 1317 |
+
"model_module_version": "1.2.0",
|
| 1318 |
+
"model_name": "LayoutModel",
|
| 1319 |
+
"state": {
|
| 1320 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1321 |
+
"_model_module_version": "1.2.0",
|
| 1322 |
+
"_model_name": "LayoutModel",
|
| 1323 |
+
"_view_count": null,
|
| 1324 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1325 |
+
"_view_module_version": "1.2.0",
|
| 1326 |
+
"_view_name": "LayoutView",
|
| 1327 |
+
"align_content": null,
|
| 1328 |
+
"align_items": null,
|
| 1329 |
+
"align_self": null,
|
| 1330 |
+
"border": null,
|
| 1331 |
+
"bottom": null,
|
| 1332 |
+
"display": null,
|
| 1333 |
+
"flex": null,
|
| 1334 |
+
"flex_flow": null,
|
| 1335 |
+
"grid_area": null,
|
| 1336 |
+
"grid_auto_columns": null,
|
| 1337 |
+
"grid_auto_flow": null,
|
| 1338 |
+
"grid_auto_rows": null,
|
| 1339 |
+
"grid_column": null,
|
| 1340 |
+
"grid_gap": null,
|
| 1341 |
+
"grid_row": null,
|
| 1342 |
+
"grid_template_areas": null,
|
| 1343 |
+
"grid_template_columns": null,
|
| 1344 |
+
"grid_template_rows": null,
|
| 1345 |
+
"height": null,
|
| 1346 |
+
"justify_content": null,
|
| 1347 |
+
"justify_items": null,
|
| 1348 |
+
"left": null,
|
| 1349 |
+
"margin": null,
|
| 1350 |
+
"max_height": null,
|
| 1351 |
+
"max_width": null,
|
| 1352 |
+
"min_height": null,
|
| 1353 |
+
"min_width": null,
|
| 1354 |
+
"object_fit": null,
|
| 1355 |
+
"object_position": null,
|
| 1356 |
+
"order": null,
|
| 1357 |
+
"overflow": null,
|
| 1358 |
+
"overflow_x": null,
|
| 1359 |
+
"overflow_y": null,
|
| 1360 |
+
"padding": null,
|
| 1361 |
+
"right": null,
|
| 1362 |
+
"top": null,
|
| 1363 |
+
"visibility": null,
|
| 1364 |
+
"width": null
|
| 1365 |
+
}
|
| 1366 |
+
},
|
| 1367 |
+
"b39b6e9131ca4ce3b31e84ceb04e1b83": {
|
| 1368 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1369 |
+
"model_module_version": "1.5.0",
|
| 1370 |
+
"model_name": "ProgressStyleModel",
|
| 1371 |
+
"state": {
|
| 1372 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1373 |
+
"_model_module_version": "1.5.0",
|
| 1374 |
+
"_model_name": "ProgressStyleModel",
|
| 1375 |
+
"_view_count": null,
|
| 1376 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1377 |
+
"_view_module_version": "1.2.0",
|
| 1378 |
+
"_view_name": "StyleView",
|
| 1379 |
+
"bar_color": null,
|
| 1380 |
+
"description_width": ""
|
| 1381 |
+
}
|
| 1382 |
+
},
|
| 1383 |
+
"b6d46d40efa14b21814f41531f5a2f41": {
|
| 1384 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1385 |
+
"model_module_version": "1.5.0",
|
| 1386 |
+
"model_name": "FloatProgressModel",
|
| 1387 |
+
"state": {
|
| 1388 |
+
"_dom_classes": [],
|
| 1389 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1390 |
+
"_model_module_version": "1.5.0",
|
| 1391 |
+
"_model_name": "FloatProgressModel",
|
| 1392 |
+
"_view_count": null,
|
| 1393 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1394 |
+
"_view_module_version": "1.5.0",
|
| 1395 |
+
"_view_name": "ProgressView",
|
| 1396 |
+
"bar_style": "success",
|
| 1397 |
+
"description": "",
|
| 1398 |
+
"description_tooltip": null,
|
| 1399 |
+
"layout": "IPY_MODEL_77f1a51099b24831ad8b2be3d2dc833a",
|
| 1400 |
+
"max": 1,
|
| 1401 |
+
"min": 0,
|
| 1402 |
+
"orientation": "horizontal",
|
| 1403 |
+
"style": "IPY_MODEL_d518f2c2ab6945b78a6d336dad6262bd",
|
| 1404 |
+
"value": 1
|
| 1405 |
+
}
|
| 1406 |
+
},
|
| 1407 |
+
"c31a747e18df4b4aa4449a30e387448c": {
|
| 1408 |
+
"model_module": "@jupyter-widgets/base",
|
| 1409 |
+
"model_module_version": "1.2.0",
|
| 1410 |
+
"model_name": "LayoutModel",
|
| 1411 |
+
"state": {
|
| 1412 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1413 |
+
"_model_module_version": "1.2.0",
|
| 1414 |
+
"_model_name": "LayoutModel",
|
| 1415 |
+
"_view_count": null,
|
| 1416 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1417 |
+
"_view_module_version": "1.2.0",
|
| 1418 |
+
"_view_name": "LayoutView",
|
| 1419 |
+
"align_content": null,
|
| 1420 |
+
"align_items": null,
|
| 1421 |
+
"align_self": null,
|
| 1422 |
+
"border": null,
|
| 1423 |
+
"bottom": null,
|
| 1424 |
+
"display": null,
|
| 1425 |
+
"flex": null,
|
| 1426 |
+
"flex_flow": null,
|
| 1427 |
+
"grid_area": null,
|
| 1428 |
+
"grid_auto_columns": null,
|
| 1429 |
+
"grid_auto_flow": null,
|
| 1430 |
+
"grid_auto_rows": null,
|
| 1431 |
+
"grid_column": null,
|
| 1432 |
+
"grid_gap": null,
|
| 1433 |
+
"grid_row": null,
|
| 1434 |
+
"grid_template_areas": null,
|
| 1435 |
+
"grid_template_columns": null,
|
| 1436 |
+
"grid_template_rows": null,
|
| 1437 |
+
"height": null,
|
| 1438 |
+
"justify_content": null,
|
| 1439 |
+
"justify_items": null,
|
| 1440 |
+
"left": null,
|
| 1441 |
+
"margin": null,
|
| 1442 |
+
"max_height": null,
|
| 1443 |
+
"max_width": null,
|
| 1444 |
+
"min_height": null,
|
| 1445 |
+
"min_width": null,
|
| 1446 |
+
"object_fit": null,
|
| 1447 |
+
"object_position": null,
|
| 1448 |
+
"order": null,
|
| 1449 |
+
"overflow": null,
|
| 1450 |
+
"overflow_x": null,
|
| 1451 |
+
"overflow_y": null,
|
| 1452 |
+
"padding": null,
|
| 1453 |
+
"right": null,
|
| 1454 |
+
"top": null,
|
| 1455 |
+
"visibility": null,
|
| 1456 |
+
"width": null
|
| 1457 |
+
}
|
| 1458 |
+
},
|
| 1459 |
+
"c5eed102ef134a4e8ca41713b82ff6a4": {
|
| 1460 |
+
"model_module": "@jupyter-widgets/base",
|
| 1461 |
+
"model_module_version": "1.2.0",
|
| 1462 |
+
"model_name": "LayoutModel",
|
| 1463 |
+
"state": {
|
| 1464 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1465 |
+
"_model_module_version": "1.2.0",
|
| 1466 |
+
"_model_name": "LayoutModel",
|
| 1467 |
+
"_view_count": null,
|
| 1468 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1469 |
+
"_view_module_version": "1.2.0",
|
| 1470 |
+
"_view_name": "LayoutView",
|
| 1471 |
+
"align_content": null,
|
| 1472 |
+
"align_items": null,
|
| 1473 |
+
"align_self": null,
|
| 1474 |
+
"border": null,
|
| 1475 |
+
"bottom": null,
|
| 1476 |
+
"display": null,
|
| 1477 |
+
"flex": null,
|
| 1478 |
+
"flex_flow": null,
|
| 1479 |
+
"grid_area": null,
|
| 1480 |
+
"grid_auto_columns": null,
|
| 1481 |
+
"grid_auto_flow": null,
|
| 1482 |
+
"grid_auto_rows": null,
|
| 1483 |
+
"grid_column": null,
|
| 1484 |
+
"grid_gap": null,
|
| 1485 |
+
"grid_row": null,
|
| 1486 |
+
"grid_template_areas": null,
|
| 1487 |
+
"grid_template_columns": null,
|
| 1488 |
+
"grid_template_rows": null,
|
| 1489 |
+
"height": null,
|
| 1490 |
+
"justify_content": null,
|
| 1491 |
+
"justify_items": null,
|
| 1492 |
+
"left": null,
|
| 1493 |
+
"margin": null,
|
| 1494 |
+
"max_height": null,
|
| 1495 |
+
"max_width": null,
|
| 1496 |
+
"min_height": null,
|
| 1497 |
+
"min_width": null,
|
| 1498 |
+
"object_fit": null,
|
| 1499 |
+
"object_position": null,
|
| 1500 |
+
"order": null,
|
| 1501 |
+
"overflow": null,
|
| 1502 |
+
"overflow_x": null,
|
| 1503 |
+
"overflow_y": null,
|
| 1504 |
+
"padding": null,
|
| 1505 |
+
"right": null,
|
| 1506 |
+
"top": null,
|
| 1507 |
+
"visibility": null,
|
| 1508 |
+
"width": null
|
| 1509 |
+
}
|
| 1510 |
+
},
|
| 1511 |
+
"d45747150d0b434593a3a7c98399599a": {
|
| 1512 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1513 |
+
"model_module_version": "1.5.0",
|
| 1514 |
+
"model_name": "HTMLModel",
|
| 1515 |
+
"state": {
|
| 1516 |
+
"_dom_classes": [],
|
| 1517 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1518 |
+
"_model_module_version": "1.5.0",
|
| 1519 |
+
"_model_name": "HTMLModel",
|
| 1520 |
+
"_view_count": null,
|
| 1521 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1522 |
+
"_view_module_version": "1.5.0",
|
| 1523 |
+
"_view_name": "HTMLView",
|
| 1524 |
+
"description": "",
|
| 1525 |
+
"description_tooltip": null,
|
| 1526 |
+
"layout": "IPY_MODEL_aa329cb93df44a6da6012c7cc49d7489",
|
| 1527 |
+
"placeholder": "",
|
| 1528 |
+
"style": "IPY_MODEL_9c875952cdd649a5bab87de9bb3f5200",
|
| 1529 |
+
"value": "100%"
|
| 1530 |
+
}
|
| 1531 |
+
},
|
| 1532 |
+
"d518f2c2ab6945b78a6d336dad6262bd": {
|
| 1533 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1534 |
+
"model_module_version": "1.5.0",
|
| 1535 |
+
"model_name": "ProgressStyleModel",
|
| 1536 |
+
"state": {
|
| 1537 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1538 |
+
"_model_module_version": "1.5.0",
|
| 1539 |
+
"_model_name": "ProgressStyleModel",
|
| 1540 |
+
"_view_count": null,
|
| 1541 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1542 |
+
"_view_module_version": "1.2.0",
|
| 1543 |
+
"_view_name": "StyleView",
|
| 1544 |
+
"bar_color": null,
|
| 1545 |
+
"description_width": ""
|
| 1546 |
+
}
|
| 1547 |
+
},
|
| 1548 |
+
"d8bf8dc5d6c84140a4e96c9c435b8f17": {
|
| 1549 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1550 |
+
"model_module_version": "1.5.0",
|
| 1551 |
+
"model_name": "HTMLModel",
|
| 1552 |
+
"state": {
|
| 1553 |
+
"_dom_classes": [],
|
| 1554 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1555 |
+
"_model_module_version": "1.5.0",
|
| 1556 |
+
"_model_name": "HTMLModel",
|
| 1557 |
+
"_view_count": null,
|
| 1558 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1559 |
+
"_view_module_version": "1.5.0",
|
| 1560 |
+
"_view_name": "HTMLView",
|
| 1561 |
+
"description": "",
|
| 1562 |
+
"description_tooltip": null,
|
| 1563 |
+
"layout": "IPY_MODEL_22ba979142074f1d976e1a905544fd2d",
|
| 1564 |
+
"placeholder": "",
|
| 1565 |
+
"style": "IPY_MODEL_5815ae1348994bfebba4a8e968489a96",
|
| 1566 |
+
"value": " 1/1 [00:00<00:00, 7.95ba/s]"
|
| 1567 |
+
}
|
| 1568 |
+
},
|
| 1569 |
+
"e6e50da6516847878309fdc5c463edb3": {
|
| 1570 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1571 |
+
"model_module_version": "1.5.0",
|
| 1572 |
+
"model_name": "DescriptionStyleModel",
|
| 1573 |
+
"state": {
|
| 1574 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1575 |
+
"_model_module_version": "1.5.0",
|
| 1576 |
+
"_model_name": "DescriptionStyleModel",
|
| 1577 |
+
"_view_count": null,
|
| 1578 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1579 |
+
"_view_module_version": "1.2.0",
|
| 1580 |
+
"_view_name": "StyleView",
|
| 1581 |
+
"description_width": ""
|
| 1582 |
+
}
|
| 1583 |
+
},
|
| 1584 |
+
"ea73f7deb1c643f7b81de7fb7acaaf1b": {
|
| 1585 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1586 |
+
"model_module_version": "1.5.0",
|
| 1587 |
+
"model_name": "FloatProgressModel",
|
| 1588 |
+
"state": {
|
| 1589 |
+
"_dom_classes": [],
|
| 1590 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1591 |
+
"_model_module_version": "1.5.0",
|
| 1592 |
+
"_model_name": "FloatProgressModel",
|
| 1593 |
+
"_view_count": null,
|
| 1594 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1595 |
+
"_view_module_version": "1.5.0",
|
| 1596 |
+
"_view_name": "ProgressView",
|
| 1597 |
+
"bar_style": "success",
|
| 1598 |
+
"description": "",
|
| 1599 |
+
"description_tooltip": null,
|
| 1600 |
+
"layout": "IPY_MODEL_c5eed102ef134a4e8ca41713b82ff6a4",
|
| 1601 |
+
"max": 6962,
|
| 1602 |
+
"min": 0,
|
| 1603 |
+
"orientation": "horizontal",
|
| 1604 |
+
"style": "IPY_MODEL_b39b6e9131ca4ce3b31e84ceb04e1b83",
|
| 1605 |
+
"value": 6962
|
| 1606 |
+
}
|
| 1607 |
+
},
|
| 1608 |
+
"efc3bc0c48124ebeb79d245216eaf0fe": {
|
| 1609 |
+
"model_module": "@jupyter-widgets/base",
|
| 1610 |
+
"model_module_version": "1.2.0",
|
| 1611 |
+
"model_name": "LayoutModel",
|
| 1612 |
+
"state": {
|
| 1613 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1614 |
+
"_model_module_version": "1.2.0",
|
| 1615 |
+
"_model_name": "LayoutModel",
|
| 1616 |
+
"_view_count": null,
|
| 1617 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1618 |
+
"_view_module_version": "1.2.0",
|
| 1619 |
+
"_view_name": "LayoutView",
|
| 1620 |
+
"align_content": null,
|
| 1621 |
+
"align_items": null,
|
| 1622 |
+
"align_self": null,
|
| 1623 |
+
"border": null,
|
| 1624 |
+
"bottom": null,
|
| 1625 |
+
"display": null,
|
| 1626 |
+
"flex": null,
|
| 1627 |
+
"flex_flow": null,
|
| 1628 |
+
"grid_area": null,
|
| 1629 |
+
"grid_auto_columns": null,
|
| 1630 |
+
"grid_auto_flow": null,
|
| 1631 |
+
"grid_auto_rows": null,
|
| 1632 |
+
"grid_column": null,
|
| 1633 |
+
"grid_gap": null,
|
| 1634 |
+
"grid_row": null,
|
| 1635 |
+
"grid_template_areas": null,
|
| 1636 |
+
"grid_template_columns": null,
|
| 1637 |
+
"grid_template_rows": null,
|
| 1638 |
+
"height": null,
|
| 1639 |
+
"justify_content": null,
|
| 1640 |
+
"justify_items": null,
|
| 1641 |
+
"left": null,
|
| 1642 |
+
"margin": null,
|
| 1643 |
+
"max_height": null,
|
| 1644 |
+
"max_width": null,
|
| 1645 |
+
"min_height": null,
|
| 1646 |
+
"min_width": null,
|
| 1647 |
+
"object_fit": null,
|
| 1648 |
+
"object_position": null,
|
| 1649 |
+
"order": null,
|
| 1650 |
+
"overflow": null,
|
| 1651 |
+
"overflow_x": null,
|
| 1652 |
+
"overflow_y": null,
|
| 1653 |
+
"padding": null,
|
| 1654 |
+
"right": null,
|
| 1655 |
+
"top": null,
|
| 1656 |
+
"visibility": null,
|
| 1657 |
+
"width": null
|
| 1658 |
+
}
|
| 1659 |
+
}
|
| 1660 |
+
}
|
| 1661 |
+
}
|
| 1662 |
+
},
|
| 1663 |
+
"nbformat": 4,
|
| 1664 |
+
"nbformat_minor": 4
|
| 1665 |
+
}
|