Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +34 -0
- generator_digit.pth +3 -0
- model.py +23 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from model import Generator
|
| 6 |
+
|
| 7 |
+
# Load the model
|
| 8 |
+
device = torch.device("cpu")
|
| 9 |
+
generator = Generator()
|
| 10 |
+
generator.load_state_dict(torch.load("generator_digit.pth", map_location=device))
|
| 11 |
+
generator.eval()
|
| 12 |
+
|
| 13 |
+
def generate_images(digit):
|
| 14 |
+
noise = torch.randn(5, 100)
|
| 15 |
+
labels = torch.tensor([digit] * 5)
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
images = generator(noise, labels).squeeze().numpy()
|
| 18 |
+
|
| 19 |
+
# Create a grid of images (5 horizontal)
|
| 20 |
+
fig, axs = plt.subplots(1, 5, figsize=(10, 2))
|
| 21 |
+
for i in range(5):
|
| 22 |
+
axs[i].imshow(images[i], cmap='gray')
|
| 23 |
+
axs[i].axis('off')
|
| 24 |
+
return fig
|
| 25 |
+
|
| 26 |
+
interface = gr.Interface(
|
| 27 |
+
fn=generate_images,
|
| 28 |
+
inputs=gr.inputs.Slider(0, 9, step=1, label="Digit (0–9)"),
|
| 29 |
+
outputs=gr.outputs.Image(type="plot"),
|
| 30 |
+
title="MNIST Digit Generator",
|
| 31 |
+
description="Generate 5 images of the digit using a conditional GAN trained on MNIST."
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
interface.launch()
|
generator_digit.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72679173523a721a7ecf0499d0b3eda442158eddcb50c4989b4570ed5976ca0b
|
| 3 |
+
size 5959844
|
model.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class Generator(nn.Module):
|
| 5 |
+
def __init__(self, noise_dim=100, num_classes=10, img_dim=28*28):
|
| 6 |
+
super(Generator, self).__init__()
|
| 7 |
+
self.label_emb = nn.Embedding(num_classes, num_classes)
|
| 8 |
+
self.model = nn.Sequential(
|
| 9 |
+
nn.Linear(noise_dim + num_classes, 256),
|
| 10 |
+
nn.ReLU(),
|
| 11 |
+
nn.Linear(256, 512),
|
| 12 |
+
nn.ReLU(),
|
| 13 |
+
nn.Linear(512, 1024),
|
| 14 |
+
nn.ReLU(),
|
| 15 |
+
nn.Linear(1024, img_dim),
|
| 16 |
+
nn.Tanh()
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
def forward(self, z, labels):
|
| 20 |
+
label_input = self.label_emb(labels)
|
| 21 |
+
x = torch.cat([z, label_input], dim=1)
|
| 22 |
+
x = self.model(x)
|
| 23 |
+
return x.view(-1, 1, 28, 28)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
gradio
|
| 3 |
+
matplotlib
|