Spaces:
Sleeping
Sleeping
Update Rosen_PFN4BO.py
Browse files- Rosen_PFN4BO.py +2 -2
Rosen_PFN4BO.py
CHANGED
|
@@ -4,7 +4,7 @@ import scipy
|
|
| 4 |
import math
|
| 5 |
from sklearn.preprocessing import power_transform, PowerTransformer, StandardScaler
|
| 6 |
|
| 7 |
-
from torchvision.transforms.functional import to_tensor
|
| 8 |
from pfns4bo import transformer
|
| 9 |
from pfns4bo import bar_distribution
|
| 10 |
|
|
@@ -54,7 +54,7 @@ def Rosen_PFN(model_name,
|
|
| 54 |
pt = StandardScaler()
|
| 55 |
pt.fit(trained_Y)
|
| 56 |
PT_trained_Y = pt.transform(trained_Y)
|
| 57 |
-
trained_Y = to_tensor(PT_trained_Y).to(torch.float32).reshape(trained_Y.shape)
|
| 58 |
elif trasform_type== 'power':
|
| 59 |
pt = PowerTransformer(method="yeo-johnson")
|
| 60 |
pt.fit(trained_Y.detach().numpy())
|
|
|
|
| 4 |
import math
|
| 5 |
from sklearn.preprocessing import power_transform, PowerTransformer, StandardScaler
|
| 6 |
|
| 7 |
+
# from torchvision.transforms.functional import to_tensor
|
| 8 |
from pfns4bo import transformer
|
| 9 |
from pfns4bo import bar_distribution
|
| 10 |
|
|
|
|
| 54 |
pt = StandardScaler()
|
| 55 |
pt.fit(trained_Y)
|
| 56 |
PT_trained_Y = pt.transform(trained_Y)
|
| 57 |
+
# trained_Y = to_tensor(PT_trained_Y).to(torch.float32).reshape(trained_Y.shape)
|
| 58 |
elif trasform_type== 'power':
|
| 59 |
pt = PowerTransformer(method="yeo-johnson")
|
| 60 |
pt.fit(trained_Y.detach().numpy())
|