Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from test_functions.Ackley10D import *
|
| 6 |
+
from test_functions.Ackley2D import *
|
| 7 |
+
from test_functions.Ackley6D import *
|
| 8 |
+
from test_functions.HeatExchanger import *
|
| 9 |
+
from test_functions.CantileverBeam import *
|
| 10 |
+
from test_functions.Car import *
|
| 11 |
+
from test_functions.CompressionSpring import *
|
| 12 |
+
from test_functions.GKXWC1 import *
|
| 13 |
+
from test_functions.GKXWC2 import *
|
| 14 |
+
from test_functions.HeatExchanger import *
|
| 15 |
+
from test_functions.JLH1 import *
|
| 16 |
+
from test_functions.JLH2 import *
|
| 17 |
+
from test_functions.KeaneBump import *
|
| 18 |
+
from test_functions.GKXWC1 import *
|
| 19 |
+
from test_functions.GKXWC2 import *
|
| 20 |
+
from test_functions.PressureVessel import *
|
| 21 |
+
from test_functions.ReinforcedConcreteBeam import *
|
| 22 |
+
from test_functions.SpeedReducer import *
|
| 23 |
+
from test_functions.ThreeTruss import *
|
| 24 |
+
from test_functions.WeldedBeam import *
|
| 25 |
+
# Import other objective functions as needed
|
| 26 |
+
import time
|
| 27 |
+
|
| 28 |
+
from Rosen_PFN4BO import *
|
| 29 |
+
from PIL import Image
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def s(input_string):
|
| 46 |
+
return input_string
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def optimize(objective_function, iteration_input, progress=gr.Progress()):
|
| 52 |
+
|
| 53 |
+
print(objective_function)
|
| 54 |
+
|
| 55 |
+
# Variable setup
|
| 56 |
+
Current_BEST = torch.tensor( -1e10 ) # Some arbitrary very small number
|
| 57 |
+
Prev_BEST = torch.tensor( -1e10 )
|
| 58 |
+
|
| 59 |
+
if objective_function=="CantileverBeam.png":
|
| 60 |
+
Current_BEST = torch.tensor( -82500 ) # Some arbitrary very small number
|
| 61 |
+
Prev_BEST = torch.tensor( -82500 )
|
| 62 |
+
elif objective_function=="CompressionSpring.png":
|
| 63 |
+
Current_BEST = torch.tensor( -8 ) # Some arbitrary very small number
|
| 64 |
+
Prev_BEST = torch.tensor( -8 )
|
| 65 |
+
elif objective_function=="HeatExchanger.png":
|
| 66 |
+
Current_BEST = torch.tensor( -30000 ) # Some arbitrary very small number
|
| 67 |
+
Prev_BEST = torch.tensor( -30000 )
|
| 68 |
+
elif objective_function=="ThreeTruss.png":
|
| 69 |
+
Current_BEST = torch.tensor( -300 ) # Some arbitrary very small number
|
| 70 |
+
Prev_BEST = torch.tensor( -300 )
|
| 71 |
+
elif objective_function=="Reinforcement.png":
|
| 72 |
+
Current_BEST = torch.tensor( -440 ) # Some arbitrary very small number
|
| 73 |
+
Prev_BEST = torch.tensor( -440 )
|
| 74 |
+
elif objective_function=="PressureVessel.png":
|
| 75 |
+
Current_BEST = torch.tensor( -40000 ) # Some arbitrary very small number
|
| 76 |
+
Prev_BEST = torch.tensor( -40000 )
|
| 77 |
+
elif objective_function=="SpeedReducer.png":
|
| 78 |
+
Current_BEST = torch.tensor( -3200 ) # Some arbitrary very small number
|
| 79 |
+
Prev_BEST = torch.tensor( -3200 )
|
| 80 |
+
elif objective_function=="WeldedBeam.png":
|
| 81 |
+
Current_BEST = torch.tensor( -35 ) # Some arbitrary very small number
|
| 82 |
+
Prev_BEST = torch.tensor( -35 )
|
| 83 |
+
elif objective_function=="Car.png":
|
| 84 |
+
Current_BEST = torch.tensor( -35 ) # Some arbitrary very small number
|
| 85 |
+
Prev_BEST = torch.tensor( -35 )
|
| 86 |
+
|
| 87 |
+
# Initial random samples
|
| 88 |
+
# print(objective_functions)
|
| 89 |
+
trained_X = torch.rand(20, objective_functions[objective_function]['dim'])
|
| 90 |
+
|
| 91 |
+
# Scale it to the domain of interest using the selected function
|
| 92 |
+
# print(objective_function)
|
| 93 |
+
X_Scaled = objective_functions[objective_function]['scaling'](trained_X)
|
| 94 |
+
|
| 95 |
+
# Get the constraints and objective
|
| 96 |
+
trained_gx, trained_Y = objective_functions[objective_function]['function'](X_Scaled)
|
| 97 |
+
|
| 98 |
+
# Convergence list to store best values
|
| 99 |
+
convergence = []
|
| 100 |
+
time_conv = []
|
| 101 |
+
|
| 102 |
+
START_TIME = time.time()
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# with gr.Progress(track_tqdm=True) as progress:
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# Optimization Loop
|
| 109 |
+
for ii in progress.tqdm(range(iteration_input)): # Example with 100 iterations
|
| 110 |
+
|
| 111 |
+
# (0) Get the updated data for this iteration
|
| 112 |
+
X_scaled = objective_functions[objective_function]['scaling'](trained_X)
|
| 113 |
+
trained_gx, trained_Y = objective_functions[objective_function]['function'](X_scaled)
|
| 114 |
+
|
| 115 |
+
# (1) Randomly sample Xpen
|
| 116 |
+
X_pen = torch.rand(1000,trained_X.shape[1])
|
| 117 |
+
|
| 118 |
+
# (2) PFN inference phase with EI
|
| 119 |
+
default_model = 'final_models/model_hebo_morebudget_9_unused_features_3.pt'
|
| 120 |
+
|
| 121 |
+
ei, p_feas = Rosen_PFN_Parallel(default_model,
|
| 122 |
+
trained_X,
|
| 123 |
+
trained_Y,
|
| 124 |
+
trained_gx,
|
| 125 |
+
X_pen,
|
| 126 |
+
'power',
|
| 127 |
+
'ei'
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Calculating CEI
|
| 131 |
+
CEI = ei
|
| 132 |
+
for jj in range(p_feas.shape[1]):
|
| 133 |
+
CEI = CEI*p_feas[:,jj]
|
| 134 |
+
|
| 135 |
+
# (4) Get the next search value
|
| 136 |
+
rec_idx = torch.argmax(CEI)
|
| 137 |
+
best_candidate = X_pen[rec_idx,:].unsqueeze(0)
|
| 138 |
+
|
| 139 |
+
# (5) Append the next search point
|
| 140 |
+
trained_X = torch.cat([trained_X, best_candidate])
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
################################################################################
|
| 144 |
+
# This is just for visualizing the best value.
|
| 145 |
+
# This section can be remove for pure optimization purpose
|
| 146 |
+
Current_X = objective_functions[objective_function]['scaling'](trained_X)
|
| 147 |
+
Current_GX, Current_Y = objective_functions[objective_function]['function'](Current_X)
|
| 148 |
+
if ((Current_GX<=0).all(dim=1)).any():
|
| 149 |
+
Current_BEST = torch.max(Current_Y[(Current_GX<=0).all(dim=1)])
|
| 150 |
+
else:
|
| 151 |
+
Current_BEST = Prev_BEST
|
| 152 |
+
################################################################################
|
| 153 |
+
|
| 154 |
+
# (ii) Convergence tracking (assuming the best Y is to be maximized)
|
| 155 |
+
# if Current_BEST != -1e10:
|
| 156 |
+
print(Current_BEST)
|
| 157 |
+
print(convergence)
|
| 158 |
+
convergence.append(Current_BEST.abs())
|
| 159 |
+
time_conv.append(time.time() - START_TIME)
|
| 160 |
+
|
| 161 |
+
# Timing
|
| 162 |
+
END_TIME = time.time()
|
| 163 |
+
TOTAL_TIME = END_TIME - START_TIME
|
| 164 |
+
|
| 165 |
+
# Website visualization
|
| 166 |
+
# (i) Radar chart for trained_X
|
| 167 |
+
radar_chart = None
|
| 168 |
+
# radar_chart = create_radar_chart(X_scaled)
|
| 169 |
+
# (ii) Convergence tracking (assuming the best Y is to be maximized)
|
| 170 |
+
convergence_plot = create_convergence_plot(objective_function, iteration_input,
|
| 171 |
+
time_conv,
|
| 172 |
+
convergence, TOTAL_TIME)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
return convergence_plot
|
| 176 |
+
# return radar_chart, convergence_plot
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def create_radar_chart(X_scaled):
|
| 187 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
|
| 188 |
+
labels = [f'x{i+1}' for i in range(X_scaled.shape[1])]
|
| 189 |
+
values = X_scaled.mean(dim=0).numpy()
|
| 190 |
+
|
| 191 |
+
num_vars = len(labels)
|
| 192 |
+
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
|
| 193 |
+
values = np.concatenate((values, [values[0]]))
|
| 194 |
+
angles += angles[:1]
|
| 195 |
+
|
| 196 |
+
ax.fill(angles, values, color='green', alpha=0.25)
|
| 197 |
+
ax.plot(angles, values, color='green', linewidth=2)
|
| 198 |
+
ax.set_yticklabels([])
|
| 199 |
+
ax.set_xticks(angles[:-1])
|
| 200 |
+
# ax.set_xticklabels(labels)
|
| 201 |
+
ax.set_xticklabels([f'{label}\n({value:.2f})' for label, value in zip(labels, values[:-1])]) # Show values
|
| 202 |
+
ax.set_title("Selected Design", size=15, color='black', y=1.1)
|
| 203 |
+
|
| 204 |
+
plt.close(fig)
|
| 205 |
+
return fig
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def create_convergence_plot(objective_function, iteration_input, time_conv, convergence, TOTAL_TIME):
|
| 214 |
+
fig, ax = plt.subplots()
|
| 215 |
+
|
| 216 |
+
# Realtime optimization data
|
| 217 |
+
ax.plot(time_conv, convergence, '^-', label='PFN-CBO (Realtime)' )
|
| 218 |
+
|
| 219 |
+
# Stored GP data
|
| 220 |
+
if objective_function=="CantileverBeam.png":
|
| 221 |
+
GP_TIME = torch.load('CantileverBeam_CEI_Avg_Time.pt')
|
| 222 |
+
GP_OBJ = torch.load('CantileverBeam_CEI_Avg_Obj.pt')
|
| 223 |
+
|
| 224 |
+
elif objective_function=="CompressionSpring.png":
|
| 225 |
+
GP_TIME = torch.load('CompressionSpring_CEI_Avg_Time.pt')
|
| 226 |
+
GP_OBJ = torch.load('CompressionSpring_CEI_Avg_Obj.pt')
|
| 227 |
+
|
| 228 |
+
elif objective_function=="HeatExchanger.png":
|
| 229 |
+
GP_TIME = torch.load('HeatExchanger_CEI_Avg_Time.pt')
|
| 230 |
+
GP_OBJ = torch.load('HeatExchanger_CEI_Avg_Obj.pt')
|
| 231 |
+
|
| 232 |
+
elif objective_function=="ThreeTruss.png":
|
| 233 |
+
GP_TIME = torch.load('ThreeTruss_CEI_Avg_Time.pt')
|
| 234 |
+
GP_OBJ = torch.load('ThreeTruss_CEI_Avg_Obj.pt')
|
| 235 |
+
|
| 236 |
+
elif objective_function=="Reinforcement.png":
|
| 237 |
+
GP_TIME = torch.load('ReinforcedConcreteBeam_CEI_Avg_Time.pt')
|
| 238 |
+
GP_OBJ = torch.load('ReinforcedConcreteBeam_CEI_Avg_Obj.pt')
|
| 239 |
+
|
| 240 |
+
elif objective_function=="PressureVessel.png":
|
| 241 |
+
GP_TIME = torch.load('PressureVessel_CEI_Avg_Time.pt')
|
| 242 |
+
GP_OBJ = torch.load('PressureVessel_CEI_Avg_Obj.pt')
|
| 243 |
+
|
| 244 |
+
elif objective_function=="SpeedReducer.png":
|
| 245 |
+
GP_TIME = torch.load('SpeedReducer_CEI_Avg_Time.pt')
|
| 246 |
+
GP_OBJ = torch.load('SpeedReducer_CEI_Avg_Obj.pt')
|
| 247 |
+
|
| 248 |
+
elif objective_function=="WeldedBeam.png":
|
| 249 |
+
GP_TIME = torch.load('WeldedBeam_CEI_Avg_Time.pt')
|
| 250 |
+
GP_OBJ = torch.load('WeldedBeam_CEI_Avg_Obj.pt')
|
| 251 |
+
|
| 252 |
+
elif objective_function=="Car.png":
|
| 253 |
+
GP_TIME = torch.load('Car_CEI_Avg_Time.pt')
|
| 254 |
+
GP_OBJ = torch.load('Car_CEI_Avg_Obj.pt')
|
| 255 |
+
|
| 256 |
+
# Plot GP data
|
| 257 |
+
ax.plot(GP_TIME[:iteration_input], GP_OBJ[:iteration_input], '^-', label='GP-CBO (Data)' )
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
ax.set_xlabel('Time (seconds)')
|
| 261 |
+
ax.set_ylabel('Objective Value')
|
| 262 |
+
ax.set_title('Convergence Plot for {t} iterations'.format(t=iteration_input))
|
| 263 |
+
# ax.legend()
|
| 264 |
+
|
| 265 |
+
if objective_function=="CantileverBeam.png":
|
| 266 |
+
ax.axhline(y=50000, color='red', linestyle='--', label='Optimal Value')
|
| 267 |
+
|
| 268 |
+
elif objective_function=="CompressionSpring.png":
|
| 269 |
+
ax.axhline(y=0, color='red', linestyle='--', label='Optimal Value')
|
| 270 |
+
|
| 271 |
+
elif objective_function=="HeatExchanger.png":
|
| 272 |
+
ax.axhline(y=4700, color='red', linestyle='--', label='Optimal Value')
|
| 273 |
+
|
| 274 |
+
elif objective_function=="ThreeTruss.png":
|
| 275 |
+
ax.axhline(y=262, color='red', linestyle='--', label='Optimal Value')
|
| 276 |
+
|
| 277 |
+
elif objective_function=="Reinforcement.png":
|
| 278 |
+
ax.axhline(y=355, color='red', linestyle='--', label='Optimal Value')
|
| 279 |
+
|
| 280 |
+
elif objective_function=="PressureVessel.png":
|
| 281 |
+
ax.axhline(y=5000, color='red', linestyle='--', label='Optimal Value')
|
| 282 |
+
|
| 283 |
+
elif objective_function=="SpeedReducer.png":
|
| 284 |
+
ax.axhline(y=2650, color='red', linestyle='--', label='Optimal Value')
|
| 285 |
+
|
| 286 |
+
elif objective_function=="WeldedBeam.png":
|
| 287 |
+
ax.axhline(y=6, color='red', linestyle='--', label='Optimal Value')
|
| 288 |
+
|
| 289 |
+
elif objective_function=="Car.png":
|
| 290 |
+
ax.axhline(y=25, color='red', linestyle='--', label='Optimal Value')
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
ax.legend(loc='best')
|
| 294 |
+
# ax.legend(loc='lower left')
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# Add text to the top right corner of the plot
|
| 298 |
+
if len(convergence) == 0:
|
| 299 |
+
ax.text(0.5, 0.5, 'No Feasible Design Found', transform=ax.transAxes, fontsize=12,
|
| 300 |
+
verticalalignment='top', horizontalalignment='right')
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
plt.close(fig)
|
| 304 |
+
return fig
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
# Define available objective functions
|
| 312 |
+
objective_functions = {
|
| 313 |
+
# "ThreeTruss.png": {"image": "ThreeTruss.png",
|
| 314 |
+
# "function": ThreeTruss,
|
| 315 |
+
# "scaling": ThreeTruss_Scaling,
|
| 316 |
+
# "dim": 2},
|
| 317 |
+
"CompressionSpring.png": {"image": "CompressionSpring.png",
|
| 318 |
+
"function": CompressionSpring,
|
| 319 |
+
"scaling": CompressionSpring_Scaling,
|
| 320 |
+
"dim": 3},
|
| 321 |
+
"Reinforcement.png": {"image": "Reinforcement.png", "function": ReinforcedConcreteBeam, "scaling": ReinforcedConcreteBeam_Scaling, "dim": 3},
|
| 322 |
+
"PressureVessel.png": {"image": "PressureVessel.png", "function": PressureVessel, "scaling": PressureVessel_Scaling, "dim": 4},
|
| 323 |
+
"SpeedReducer.png": {"image": "SpeedReducer.png", "function": SpeedReducer, "scaling": SpeedReducer_Scaling, "dim": 7},
|
| 324 |
+
"WeldedBeam.png": {"image": "WeldedBeam.png", "function": WeldedBeam, "scaling": WeldedBeam_Scaling, "dim": 4},
|
| 325 |
+
"HeatExchanger.png": {"image": "HeatExchanger.png", "function": HeatExchanger, "scaling": HeatExchanger_Scaling, "dim": 8},
|
| 326 |
+
"CantileverBeam.png": {"image": "CantileverBeam.png", "function": CantileverBeam, "scaling": CantileverBeam_Scaling, "dim": 10},
|
| 327 |
+
"Car.png": {"image": "Car.png", "function": Car, "scaling": Car_Scaling, "dim": 11},
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
# Extract just the image paths for the gallery
|
| 354 |
+
image_paths = [key for key in objective_functions]
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def submit_action(objective_function_choices, iteration_input):
|
| 358 |
+
# print(iteration_input)
|
| 359 |
+
# print(len(objective_function_choices))
|
| 360 |
+
# print(objective_functions[objective_function_choices]['function'])
|
| 361 |
+
if len(objective_function_choices)>0:
|
| 362 |
+
selected_function = objective_functions[objective_function_choices]['function']
|
| 363 |
+
return optimize(objective_function_choices, iteration_input)
|
| 364 |
+
return None
|
| 365 |
+
|
| 366 |
+
# Function to clear the output
|
| 367 |
+
def clear_output():
|
| 368 |
+
# print(gallery.selected_index)
|
| 369 |
+
|
| 370 |
+
return gr.update(value=[], selected=None), None, 15, gr.Markdown(""), 'Test_formulation_default.png'
|
| 371 |
+
|
| 372 |
+
def reset_gallery():
|
| 373 |
+
return gr.update(value=image_paths)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
with gr.Blocks() as demo:
|
| 377 |
+
# Centered Title and Description using gr.HTML
|
| 378 |
+
gr.HTML(
|
| 379 |
+
"""
|
| 380 |
+
<div style="text-align: center;">
|
| 381 |
+
<h1>Pre-trained Transformer for Constrained Bayesian Optimization</h1>
|
| 382 |
+
<h4>Paper: <a href="https://arxiv.org/abs/2404.04495">
|
| 383 |
+
Fast and Accurate Bayesian Optimization with Pre-trained Transformers for Constrained Engineering Problems</a>
|
| 384 |
+
</h4>
|
| 385 |
+
|
| 386 |
+
<p style="text-align: left;">This is a demo for Bayesian Optimization using PFN (Prior-Data Fitted Networks).
|
| 387 |
+
Select your objective function by clicking on one of the check boxes below, then enter the iteration number to run the optimization process.
|
| 388 |
+
The results will be visualized in the radar chart and convergence plot.</p>
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
</div>
|
| 394 |
+
"""
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
with gr.Row():
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
with gr.Column(variant='compact'):
|
| 402 |
+
# gr.Markdown("# Inputs: ")
|
| 403 |
+
|
| 404 |
+
with gr.Row():
|
| 405 |
+
gr.Markdown("## Select a problem (objective): ")
|
| 406 |
+
img_key = gr.Markdown(value="", visible=False)
|
| 407 |
+
|
| 408 |
+
gallery = gr.Gallery(value=image_paths, label="Objective Functions",
|
| 409 |
+
# height = 450,
|
| 410 |
+
object_fit='contain',
|
| 411 |
+
columns=3, rows=3, elem_id="gallery")
|
| 412 |
+
|
| 413 |
+
gr.Markdown("## Enter iteration Number: ")
|
| 414 |
+
iteration_input = gr.Slider(label="Iterations:", minimum=15, maximum=50, step=1, value=15)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# Row for the Clear and Submit buttons
|
| 418 |
+
with gr.Row():
|
| 419 |
+
clear_button = gr.Button("Clear")
|
| 420 |
+
submit_button = gr.Button("Submit", variant="primary")
|
| 421 |
+
|
| 422 |
+
with gr.Column():
|
| 423 |
+
# gr.Markdown("# Outputs: ")
|
| 424 |
+
gr.Markdown("## Problem Formulation: ")
|
| 425 |
+
formulation = gr.Image(value='Formulation_default.png', height=150)
|
| 426 |
+
gr.Markdown("## Results: ")
|
| 427 |
+
gr.Markdown("The graph will plot the best observed data v.s. the time for the algorithm to run up until the iteration. The PFN-CBO shows the result of the realtime optimization running in the backend while the GP-CBO shows the stored data from our previous experiments since running GP-CBO will take longer time.")
|
| 428 |
+
convergence_plot = gr.Plot(label="Convergence Plot")
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
def handle_select(evt: gr.SelectData):
|
| 433 |
+
selected_image = evt.value
|
| 434 |
+
key = evt.value['image']['orig_name']
|
| 435 |
+
formulation = 'Test_formulation.png'
|
| 436 |
+
print('here')
|
| 437 |
+
print(key)
|
| 438 |
+
|
| 439 |
+
return key, formulation
|
| 440 |
+
|
| 441 |
+
gallery.select(fn=handle_select, inputs=None, outputs=[img_key, formulation])
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
submit_button.click(
|
| 446 |
+
submit_action,
|
| 447 |
+
inputs=[img_key, iteration_input],
|
| 448 |
+
# outputs= [radar_plot, convergence_plot],
|
| 449 |
+
outputs= convergence_plot,
|
| 450 |
+
|
| 451 |
+
# progress=True # Enable progress tracking
|
| 452 |
+
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
clear_button.click(
|
| 456 |
+
clear_output,
|
| 457 |
+
inputs=None,
|
| 458 |
+
outputs=[gallery, convergence_plot, iteration_input, img_key, formulation]
|
| 459 |
+
).then(
|
| 460 |
+
# Step 2: Reset the gallery to the original list
|
| 461 |
+
reset_gallery,
|
| 462 |
+
inputs=None,
|
| 463 |
+
outputs=gallery
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
demo.launch()
|