Spaces:
Running
on
Zero
Running
on
Zero
| import torchvision | |
| from torch import nn | |
| # EfficientNet | |
| class EfficientNetEncoder(nn.Module): | |
| def __init__(self, c_latent=16): | |
| super().__init__() | |
| self.backbone = torchvision.models.efficientnet_v2_s().features.eval() | |
| self.mapper = nn.Sequential( | |
| nn.Conv2d(1280, c_latent, kernel_size=1, bias=False), | |
| nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1 | |
| ) | |
| def forward(self, x): | |
| return self.mapper(self.backbone(x)) | |