Spaces:
Runtime error
Runtime error
| import torch | |
| import matplotlib.cm | |
| import skimage.io | |
| import skimage.feature | |
| import skimage.filters | |
| import numpy as np | |
| import os | |
| from collections import OrderedDict | |
| import glob | |
| from sklearn.metrics import f1_score, average_precision_score | |
| from sklearn.metrics import precision_recall_curve, roc_curve | |
| SMOOTH = 1e-6 | |
| def get_iou(outputs: torch.Tensor, labels: torch.Tensor): | |
| # You can comment out this line if you are passing tensors of equal shape | |
| # But if you are passing output from UNet or something it will most probably | |
| # be with the BATCH x 1 x H x W shape | |
| outputs = outputs.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W | |
| labels = labels.squeeze(1) # BATCH x 1 x H x W => BATCH x H x W | |
| intersection = (outputs & labels).float().sum((1, 2)) # Will be zero if Truth=0 or Prediction=0 | |
| union = (outputs | labels).float().sum((1, 2)) # Will be zzero if both are 0 | |
| iou = (intersection + SMOOTH) / (union + SMOOTH) # We smooth our devision to avoid 0/0 | |
| return iou.cpu().numpy() | |
| def get_f1_scores(predict, target, ignore_index=-1): | |
| # Tensor process | |
| batch_size = predict.shape[0] | |
| predict = predict.data.cpu().numpy().reshape(-1) | |
| target = target.data.cpu().numpy().reshape(-1) | |
| pb = predict[target != ignore_index].reshape(batch_size, -1) | |
| tb = target[target != ignore_index].reshape(batch_size, -1) | |
| total = [] | |
| for p, t in zip(pb, tb): | |
| total.append(np.nan_to_num(f1_score(t, p))) | |
| return total | |
| def get_roc(predict, target, ignore_index=-1): | |
| target_expand = target.unsqueeze(1).expand_as(predict) | |
| target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
| # Tensor process | |
| x = torch.zeros_like(target_expand) | |
| t = target.unsqueeze(1).clamp(min=0) | |
| target_1hot = x.scatter_(1, t, 1) | |
| batch_size = predict.shape[0] | |
| predict = predict.data.cpu().numpy().reshape(-1) | |
| target = target_1hot.data.cpu().numpy().reshape(-1) | |
| pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
| tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
| total = [] | |
| for p, t in zip(pb, tb): | |
| total.append(roc_curve(t, p)) | |
| return total | |
| def get_pr(predict, target, ignore_index=-1): | |
| target_expand = target.unsqueeze(1).expand_as(predict) | |
| target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
| # Tensor process | |
| x = torch.zeros_like(target_expand) | |
| t = target.unsqueeze(1).clamp(min=0) | |
| target_1hot = x.scatter_(1, t, 1) | |
| batch_size = predict.shape[0] | |
| predict = predict.data.cpu().numpy().reshape(-1) | |
| target = target_1hot.data.cpu().numpy().reshape(-1) | |
| pb = predict[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
| tb = target[target_expand_numpy != ignore_index].reshape(batch_size, -1) | |
| total = [] | |
| for p, t in zip(pb, tb): | |
| total.append(precision_recall_curve(t, p)) | |
| return total | |
| def get_ap_scores(predict, target, ignore_index=-1): | |
| total = [] | |
| for pred, tgt in zip(predict, target): | |
| target_expand = tgt.unsqueeze(0).expand_as(pred) | |
| target_expand_numpy = target_expand.data.cpu().numpy().reshape(-1) | |
| # Tensor process | |
| x = torch.zeros_like(target_expand) | |
| t = tgt.unsqueeze(0).clamp(min=0).long() | |
| target_1hot = x.scatter_(0, t, 1) | |
| predict_flat = pred.data.cpu().numpy().reshape(-1) | |
| target_flat = target_1hot.data.cpu().numpy().reshape(-1) | |
| p = predict_flat[target_expand_numpy != ignore_index] | |
| t = target_flat[target_expand_numpy != ignore_index] | |
| total.append(np.nan_to_num(average_precision_score(t, p))) | |
| return total | |
| def get_ap_multiclass(predict, target): | |
| total = [] | |
| for pred, tgt in zip(predict, target): | |
| predict_flat = pred.data.cpu().numpy().reshape(-1) | |
| target_flat = tgt.data.cpu().numpy().reshape(-1) | |
| total.append(np.nan_to_num(average_precision_score(target_flat, predict_flat))) | |
| return total | |
| def batch_precision_recall(predict, target, thr=0.5): | |
| """Batch Precision Recall | |
| Args: | |
| predict: input 4D tensor | |
| target: label 4D tensor | |
| """ | |
| # _, predict = torch.max(predict, 1) | |
| predict = predict > thr | |
| predict = predict.data.cpu().numpy() + 1 | |
| target = target.data.cpu().numpy() + 1 | |
| tp = np.sum(((predict == 2) * (target == 2)) * (target > 0)) | |
| fp = np.sum(((predict == 2) * (target == 1)) * (target > 0)) | |
| fn = np.sum(((predict == 1) * (target == 2)) * (target > 0)) | |
| precision = float(np.nan_to_num(tp / (tp + fp))) | |
| recall = float(np.nan_to_num(tp / (tp + fn))) | |
| return precision, recall | |
| def batch_pix_accuracy(predict, target): | |
| """Batch Pixel Accuracy | |
| Args: | |
| predict: input 3D tensor | |
| target: label 3D tensor | |
| """ | |
| # for thr in np.linspace(0, 1, slices): | |
| _, predict = torch.max(predict, 0) | |
| predict = predict.cpu().numpy() + 1 | |
| target = target.cpu().numpy() + 1 | |
| pixel_labeled = np.sum(target > 0) | |
| pixel_correct = np.sum((predict == target) * (target > 0)) | |
| assert pixel_correct <= pixel_labeled, \ | |
| "Correct area should be smaller than Labeled" | |
| return pixel_correct, pixel_labeled | |
| def batch_intersection_union(predict, target, nclass): | |
| """Batch Intersection of Union | |
| Args: | |
| predict: input 3D tensor | |
| target: label 3D tensor | |
| nclass: number of categories (int) | |
| """ | |
| _, predict = torch.max(predict, 0) | |
| mini = 1 | |
| maxi = nclass | |
| nbins = nclass | |
| predict = predict.cpu().numpy() + 1 | |
| target = target.cpu().numpy() + 1 | |
| predict = predict * (target > 0).astype(predict.dtype) | |
| intersection = predict * (predict == target) | |
| # areas of intersection and union | |
| area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi)) | |
| area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi)) | |
| area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi)) | |
| area_union = area_pred + area_lab - area_inter | |
| assert (area_inter <= area_union).all(), \ | |
| "Intersection area should be smaller than Union area" | |
| return area_inter, area_union | |
| def pixel_accuracy(im_pred, im_lab): | |
| # ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py | |
| im_pred = np.asarray(im_pred) | |
| im_lab = np.asarray(im_lab) | |
| # Remove classes from unlabeled pixels in gt image. | |
| # We should not penalize detections in unlabeled portions of the image. | |
| pixel_labeled = np.sum(im_lab > 0) | |
| pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0)) | |
| # pixel_accuracy = 1.0 * pixel_correct / pixel_labeled | |
| return pixel_correct, pixel_labeled | |
| def intersection_and_union(im_pred, im_lab, num_class): | |
| im_pred = np.asarray(im_pred) | |
| im_lab = np.asarray(im_lab) | |
| # Remove classes from unlabeled pixels in gt image. | |
| im_pred = im_pred * (im_lab > 0) | |
| # Compute area intersection: | |
| intersection = im_pred * (im_pred == im_lab) | |
| area_inter, _ = np.histogram(intersection, bins=num_class - 1, | |
| range=(1, num_class - 1)) | |
| # Compute area union: | |
| area_pred, _ = np.histogram(im_pred, bins=num_class - 1, | |
| range=(1, num_class - 1)) | |
| area_lab, _ = np.histogram(im_lab, bins=num_class - 1, | |
| range=(1, num_class - 1)) | |
| area_union = area_pred + area_lab - area_inter | |
| return area_inter, area_union | |
| class Saver(object): | |
| def __init__(self, args): | |
| self.args = args | |
| self.directory = os.path.join('run', args.train_dataset, args.model) | |
| self.runs = sorted(glob.glob(os.path.join(self.directory, 'experiment_*'))) | |
| run_id = int(self.runs[-1].split('_')[-1]) + 1 if self.runs else 0 | |
| self.experiment_dir = os.path.join(self.directory, 'experiment_{}'.format(str(run_id))) | |
| if not os.path.exists(self.experiment_dir): | |
| os.makedirs(self.experiment_dir) | |
| def save_checkpoint(self, state, filename='checkpoint.pth.tar'): | |
| """Saves checkpoint to disk""" | |
| filename = os.path.join(self.experiment_dir, filename) | |
| torch.save(state, filename) | |
| def save_experiment_config(self): | |
| logfile = os.path.join(self.experiment_dir, 'parameters.txt') | |
| log_file = open(logfile, 'w') | |
| p = OrderedDict() | |
| p['train_dataset'] = self.args.train_dataset | |
| p['lr'] = self.args.lr | |
| p['epoch'] = self.args.epochs | |
| for key, val in p.items(): | |
| log_file.write(key + ':' + str(val) + '\n') | |
| log_file.close() | |
| class Metric(object): | |
| """Base class for all metrics. | |
| From: https://github.com/pytorch/tnt/blob/master/torchnet/meter/meter.py | |
| """ | |
| def reset(self): | |
| pass | |
| def add(self): | |
| pass | |
| def value(self): | |
| pass | |
| class ConfusionMatrix(Metric): | |
| """Constructs a confusion matrix for a multi-class classification problems. | |
| Does not support multi-label, multi-class problems. | |
| Keyword arguments: | |
| - num_classes (int): number of classes in the classification problem. | |
| - normalized (boolean, optional): Determines whether or not the confusion | |
| matrix is normalized or not. Default: False. | |
| Modified from: https://github.com/pytorch/tnt/blob/master/torchnet/meter/confusionmeter.py | |
| """ | |
| def __init__(self, num_classes, normalized=False): | |
| super().__init__() | |
| self.conf = np.ndarray((num_classes, num_classes), dtype=np.int32) | |
| self.normalized = normalized | |
| self.num_classes = num_classes | |
| self.reset() | |
| def reset(self): | |
| self.conf.fill(0) | |
| def add(self, predicted, target): | |
| """Computes the confusion matrix | |
| The shape of the confusion matrix is K x K, where K is the number | |
| of classes. | |
| Keyword arguments: | |
| - predicted (Tensor or numpy.ndarray): Can be an N x K tensor/array of | |
| predicted scores obtained from the model for N examples and K classes, | |
| or an N-tensor/array of integer values between 0 and K-1. | |
| - target (Tensor or numpy.ndarray): Can be an N x K tensor/array of | |
| ground-truth classes for N examples and K classes, or an N-tensor/array | |
| of integer values between 0 and K-1. | |
| """ | |
| # If target and/or predicted are tensors, convert them to numpy arrays | |
| if torch.is_tensor(predicted): | |
| predicted = predicted.cpu().numpy() | |
| if torch.is_tensor(target): | |
| target = target.cpu().numpy() | |
| assert predicted.shape[0] == target.shape[0], \ | |
| 'number of targets and predicted outputs do not match' | |
| if np.ndim(predicted) != 1: | |
| assert predicted.shape[1] == self.num_classes, \ | |
| 'number of predictions does not match size of confusion matrix' | |
| predicted = np.argmax(predicted, 1) | |
| else: | |
| assert (predicted.max() < self.num_classes) and (predicted.min() >= 0), \ | |
| 'predicted values are not between 0 and k-1' | |
| if np.ndim(target) != 1: | |
| assert target.shape[1] == self.num_classes, \ | |
| 'Onehot target does not match size of confusion matrix' | |
| assert (target >= 0).all() and (target <= 1).all(), \ | |
| 'in one-hot encoding, target values should be 0 or 1' | |
| assert (target.sum(1) == 1).all(), \ | |
| 'multi-label setting is not supported' | |
| target = np.argmax(target, 1) | |
| else: | |
| assert (target.max() < self.num_classes) and (target.min() >= 0), \ | |
| 'target values are not between 0 and k-1' | |
| # hack for bincounting 2 arrays together | |
| x = predicted + self.num_classes * target | |
| bincount_2d = np.bincount( | |
| x.astype(np.int32), minlength=self.num_classes**2) | |
| assert bincount_2d.size == self.num_classes**2 | |
| conf = bincount_2d.reshape((self.num_classes, self.num_classes)) | |
| self.conf += conf | |
| def value(self): | |
| """ | |
| Returns: | |
| Confustion matrix of K rows and K columns, where rows corresponds | |
| to ground-truth targets and columns corresponds to predicted | |
| targets. | |
| """ | |
| if self.normalized: | |
| conf = self.conf.astype(np.float32) | |
| return conf / conf.sum(1).clip(min=1e-12)[:, None] | |
| else: | |
| return self.conf | |
| def vec2im(V, shape=()): | |
| ''' | |
| Transform an array V into a specified shape - or if no shape is given assume a square output format. | |
| Parameters | |
| ---------- | |
| V : numpy.ndarray | |
| an array either representing a matrix or vector to be reshaped into an two-dimensional image | |
| shape : tuple or list | |
| optional. containing the shape information for the output array if not given, the output is assumed to be square | |
| Returns | |
| ------- | |
| W : numpy.ndarray | |
| with W.shape = shape or W.shape = [np.sqrt(V.size)]*2 | |
| ''' | |
| if len(shape) < 2: | |
| shape = [np.sqrt(V.size)] * 2 | |
| shape = map(int, shape) | |
| return np.reshape(V, shape) | |
| def enlarge_image(img, scaling=3): | |
| ''' | |
| Enlarges a given input matrix by replicating each pixel value scaling times in horizontal and vertical direction. | |
| Parameters | |
| ---------- | |
| img : numpy.ndarray | |
| array of shape [H x W] OR [H x W x D] | |
| scaling : int | |
| positive integer value > 0 | |
| Returns | |
| ------- | |
| out : numpy.ndarray | |
| two-dimensional array of shape [scaling*H x scaling*W] | |
| OR | |
| three-dimensional array of shape [scaling*H x scaling*W x D] | |
| depending on the dimensionality of the input | |
| ''' | |
| if scaling < 1 or not isinstance(scaling, int): | |
| print('scaling factor needs to be an int >= 1') | |
| if len(img.shape) == 2: | |
| H, W = img.shape | |
| out = np.zeros((scaling * H, scaling * W)) | |
| for h in range(H): | |
| fh = scaling * h | |
| for w in range(W): | |
| fw = scaling * w | |
| out[fh:fh + scaling, fw:fw + scaling] = img[h, w] | |
| elif len(img.shape) == 3: | |
| H, W, D = img.shape | |
| out = np.zeros((scaling * H, scaling * W, D)) | |
| for h in range(H): | |
| fh = scaling * h | |
| for w in range(W): | |
| fw = scaling * w | |
| out[fh:fh + scaling, fw:fw + scaling, :] = img[h, w, :] | |
| return out | |
| def repaint_corner_pixels(rgbimg, scaling=3): | |
| ''' | |
| DEPRECATED/OBSOLETE. | |
| Recolors the top left and bottom right pixel (groups) with the average rgb value of its three neighboring pixel (groups). | |
| The recoloring visually masks the opposing pixel values which are a product of stabilizing the scaling. | |
| Assumes those image ares will pretty much never show evidence. | |
| Parameters | |
| ---------- | |
| rgbimg : numpy.ndarray | |
| array of shape [H x W x 3] | |
| scaling : int | |
| positive integer value > 0 | |
| Returns | |
| ------- | |
| rgbimg : numpy.ndarray | |
| three-dimensional array of shape [scaling*H x scaling*W x 3] | |
| ''' | |
| # top left corner. | |
| rgbimg[0:scaling, 0:scaling, :] = (rgbimg[0, scaling, :] + rgbimg[scaling, 0, :] + rgbimg[scaling, scaling, | |
| :]) / 3.0 | |
| # bottom right corner | |
| rgbimg[-scaling:, -scaling:, :] = (rgbimg[-1, -1 - scaling, :] + rgbimg[-1 - scaling, -1, :] + rgbimg[-1 - scaling, | |
| -1 - scaling, | |
| :]) / 3.0 | |
| return rgbimg | |
| def digit_to_rgb(X, scaling=3, shape=(), cmap='binary'): | |
| ''' | |
| Takes as input an intensity array and produces a rgb image due to some color map | |
| Parameters | |
| ---------- | |
| X : numpy.ndarray | |
| intensity matrix as array of shape [M x N] | |
| scaling : int | |
| optional. positive integer value > 0 | |
| shape: tuple or list of its , length = 2 | |
| optional. if not given, X is reshaped to be square. | |
| cmap : str | |
| name of color map of choice. default is 'binary' | |
| Returns | |
| ------- | |
| image : numpy.ndarray | |
| three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N | |
| ''' | |
| # create color map object from name string | |
| cmap = eval('matplotlib.cm.{}'.format(cmap)) | |
| image = enlarge_image(vec2im(X, shape), scaling) # enlarge | |
| image = cmap(image.flatten())[..., 0:3].reshape([image.shape[0], image.shape[1], 3]) # colorize, reshape | |
| return image | |
| def hm_to_rgb(R, X=None, scaling=3, shape=(), sigma=2, cmap='bwr', normalize=True): | |
| ''' | |
| Takes as input an intensity array and produces a rgb image for the represented heatmap. | |
| optionally draws the outline of another input on top of it. | |
| Parameters | |
| ---------- | |
| R : numpy.ndarray | |
| the heatmap to be visualized, shaped [M x N] | |
| X : numpy.ndarray | |
| optional. some input, usually the data point for which the heatmap R is for, which shall serve | |
| as a template for a black outline to be drawn on top of the image | |
| shaped [M x N] | |
| scaling: int | |
| factor, on how to enlarge the heatmap (to control resolution and as a inverse way to control outline thickness) | |
| after reshaping it using shape. | |
| shape: tuple or list, length = 2 | |
| optional. if not given, X is reshaped to be square. | |
| sigma : double | |
| optional. sigma-parameter for the canny algorithm used for edge detection. the found edges are drawn as outlines. | |
| cmap : str | |
| optional. color map of choice | |
| normalize : bool | |
| optional. whether to normalize the heatmap to [-1 1] prior to colorization or not. | |
| Returns | |
| ------- | |
| rgbimg : numpy.ndarray | |
| three-dimensional array of shape [scaling*H x scaling*W x 3] , where H*W == M*N | |
| ''' | |
| # create color map object from name string | |
| cmap = eval('matplotlib.cm.{}'.format(cmap)) | |
| if normalize: | |
| R = R / np.max(np.abs(R)) # normalize to [-1,1] wrt to max relevance magnitude | |
| R = (R + 1.) / 2. # shift/normalize to [0,1] for color mapping | |
| R = enlarge_image(R, scaling) | |
| rgb = cmap(R.flatten())[..., 0:3].reshape([R.shape[0], R.shape[1], 3]) | |
| # rgb = repaint_corner_pixels(rgb, scaling) #obsolete due to directly calling the color map with [0,1]-normalized inputs | |
| if not X is None: # compute the outline of the input | |
| # X = enlarge_image(vec2im(X,shape), scaling) | |
| xdims = X.shape | |
| Rdims = R.shape | |
| return rgb | |
| def save_image(rgb_images, path, gap=2): | |
| ''' | |
| Takes as input a list of rgb images, places them next to each other with a gap and writes out the result. | |
| Parameters | |
| ---------- | |
| rgb_images : list , tuple, collection. such stuff | |
| each item in the collection is expected to be an rgb image of dimensions [H x _ x 3] | |
| where the width is variable | |
| path : str | |
| the output path of the assembled image | |
| gap : int | |
| optional. sets the width of a black area of pixels realized as an image shaped [H x gap x 3] in between the input images | |
| Returns | |
| ------- | |
| image : numpy.ndarray | |
| the assembled image as written out to path | |
| ''' | |
| sz = [] | |
| image = [] | |
| for i in range(len(rgb_images)): | |
| if not sz: | |
| sz = rgb_images[i].shape | |
| image = rgb_images[i] | |
| gap = np.zeros((sz[0], gap, sz[2])) | |
| continue | |
| if not sz[0] == rgb_images[i].shape[0] and sz[1] == rgb_images[i].shape[2]: | |
| print('image', i, 'differs in size. unable to perform horizontal alignment') | |
| print('expected: Hx_xD = {0}x_x{1}'.format(sz[0], sz[1])) | |
| print('got : Hx_xD = {0}x_x{1}'.format(rgb_images[i].shape[0], rgb_images[i].shape[1])) | |
| print('skipping image\n') | |
| else: | |
| image = np.hstack((image, gap, rgb_images[i])) | |
| image *= 255 | |
| image = image.astype(np.uint8) | |
| print('saving image to ', path) | |
| skimage.io.imsave(path, image) | |
| return image | |
| class IoU(Metric): | |
| """Computes the intersection over union (IoU) per class and corresponding | |
| mean (mIoU). | |
| Intersection over union (IoU) is a common evaluation metric for semantic | |
| segmentation. The predictions are first accumulated in a confusion matrix | |
| and the IoU is computed from it as follows: | |
| IoU = true_positive / (true_positive + false_positive + false_negative). | |
| Keyword arguments: | |
| - num_classes (int): number of classes in the classification problem | |
| - normalized (boolean, optional): Determines whether or not the confusion | |
| matrix is normalized or not. Default: False. | |
| - ignore_index (int or iterable, optional): Index of the classes to ignore | |
| when computing the IoU. Can be an int, or any iterable of ints. | |
| """ | |
| def __init__(self, num_classes, normalized=False, ignore_index=None): | |
| super().__init__() | |
| self.conf_metric = ConfusionMatrix(num_classes, normalized) | |
| if ignore_index is None: | |
| self.ignore_index = None | |
| elif isinstance(ignore_index, int): | |
| self.ignore_index = (ignore_index,) | |
| else: | |
| try: | |
| self.ignore_index = tuple(ignore_index) | |
| except TypeError: | |
| raise ValueError("'ignore_index' must be an int or iterable") | |
| def reset(self): | |
| self.conf_metric.reset() | |
| def add(self, predicted, target): | |
| """Adds the predicted and target pair to the IoU metric. | |
| Keyword arguments: | |
| - predicted (Tensor): Can be a (N, K, H, W) tensor of | |
| predicted scores obtained from the model for N examples and K classes, | |
| or (N, H, W) tensor of integer values between 0 and K-1. | |
| - target (Tensor): Can be a (N, K, H, W) tensor of | |
| target scores for N examples and K classes, or (N, H, W) tensor of | |
| integer values between 0 and K-1. | |
| """ | |
| # Dimensions check | |
| assert predicted.size(0) == target.size(0), \ | |
| 'number of targets and predicted outputs do not match' | |
| assert predicted.dim() == 3 or predicted.dim() == 4, \ | |
| "predictions must be of dimension (N, H, W) or (N, K, H, W)" | |
| assert target.dim() == 3 or target.dim() == 4, \ | |
| "targets must be of dimension (N, H, W) or (N, K, H, W)" | |
| # If the tensor is in categorical format convert it to integer format | |
| if predicted.dim() == 4: | |
| _, predicted = predicted.max(1) | |
| if target.dim() == 4: | |
| _, target = target.max(1) | |
| self.conf_metric.add(predicted.view(-1), target.view(-1)) | |
| def value(self): | |
| """Computes the IoU and mean IoU. | |
| The mean computation ignores NaN elements of the IoU array. | |
| Returns: | |
| Tuple: (IoU, mIoU). The first output is the per class IoU, | |
| for K classes it's numpy.ndarray with K elements. The second output, | |
| is the mean IoU. | |
| """ | |
| conf_matrix = self.conf_metric.value() | |
| if self.ignore_index is not None: | |
| for index in self.ignore_index: | |
| conf_matrix[:, self.ignore_index] = 0 | |
| conf_matrix[self.ignore_index, :] = 0 | |
| true_positive = np.diag(conf_matrix) | |
| false_positive = np.sum(conf_matrix, 0) - true_positive | |
| false_negative = np.sum(conf_matrix, 1) - true_positive | |
| # Just in case we get a division by 0, ignore/hide the error | |
| with np.errstate(divide='ignore', invalid='ignore'): | |
| iou = true_positive / (true_positive + false_positive + false_negative) | |
| return iou, np.nanmean(iou) | |