Spaces:
Runtime error
Runtime error
yu-rp
commited on
Commit
·
69d0bde
1
Parent(s):
a531efa
add gpt box
Browse files
app.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from API_LLaVA.functions import get_model as llava_get_model, get_preanswer as llava_get_preanswer, from_preanswer_to_mask as llava_from_preanswer_to_mask
|
| 6 |
from API_LLaVA.hook import hook_logger as llava_hook_logger
|
|
@@ -23,8 +26,55 @@ MARKDOWN = """
|
|
| 23 |
</div>
|
| 24 |
"""
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def init_clip():
|
| 27 |
-
clip_model, clip_prs, clip_preprocess, _, clip_tokenizer = clip_get_model(
|
|
|
|
|
|
|
| 28 |
return {"clip_model": clip_model, "clip_prs": clip_prs, "clip_preprocess": clip_preprocess, "clip_tokenizer": clip_tokenizer}
|
| 29 |
|
| 30 |
def init_llava():
|
|
@@ -133,21 +183,38 @@ image_output = gr.Image(
|
|
| 133 |
text_query = gr.Textbox(
|
| 134 |
label="Query",
|
| 135 |
placeholder="Enter a query about the image",
|
| 136 |
-
lines=
|
| 137 |
type="text")
|
| 138 |
text_pre_answer = gr.Textbox(
|
| 139 |
label="LLaVA Response",
|
| 140 |
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
|
| 141 |
placeholder="",
|
| 142 |
-
lines=
|
| 143 |
interactive=False,
|
| 144 |
type="text")
|
| 145 |
text_highlight_text = gr.Textbox(
|
| 146 |
label = "Hint Text.",
|
| 147 |
-
info = "The text based on which the mask will be generated. For
|
| 148 |
placeholder="Enter the hint text",
|
| 149 |
lines=1,
|
| 150 |
type="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
radio_api_method = gr.Radio(
|
| 153 |
["CLIP_Based API", "LLaVA_Based API"] if torch.cuda.is_available() else ["CLIP_Based API"],
|
|
@@ -187,38 +254,56 @@ radio_interpolate_method_name = gr.Radio(
|
|
| 187 |
|
| 188 |
generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
|
| 189 |
generate_mask_button = gr.Button("API Go!")
|
|
|
|
| 190 |
|
| 191 |
with gr.Blocks() as demo:
|
| 192 |
gr.Markdown(MARKDOWN)
|
| 193 |
state_cache = gr.State({})
|
| 194 |
state_model = gr.State(init_clip())
|
| 195 |
with gr.Row():
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
with gr.Column():
|
| 204 |
-
with gr.Row():
|
| 205 |
text_query.render()
|
| 206 |
-
with gr.Row():
|
| 207 |
generate_llava_response_button.render()
|
| 208 |
-
with gr.Row():
|
| 209 |
text_pre_answer.render()
|
| 210 |
-
with gr.Row():
|
| 211 |
text_highlight_text.render()
|
| 212 |
-
|
| 213 |
-
with gr.Row():
|
| 214 |
slider_enhance_coe.render()
|
| 215 |
-
with gr.Row():
|
| 216 |
slider_kernel_size.render()
|
| 217 |
-
with gr.Row():
|
| 218 |
radio_interpolate_method_name.render()
|
| 219 |
-
with gr.Row():
|
| 220 |
slider_mask_grayscale.render()
|
|
|
|
| 221 |
generate_mask_button.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
radio_api_method.change(
|
| 224 |
fn=change_api_method,
|
|
@@ -264,5 +349,10 @@ with gr.Blocks() as demo:
|
|
| 264 |
],
|
| 265 |
outputs=[image_output, state_cache]
|
| 266 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
demo.queue(max_size = 1).launch(show_error=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
import base64
|
| 5 |
+
import requests
|
| 6 |
+
from io import BytesIO
|
| 7 |
|
| 8 |
from API_LLaVA.functions import get_model as llava_get_model, get_preanswer as llava_get_preanswer, from_preanswer_to_mask as llava_from_preanswer_to_mask
|
| 9 |
from API_LLaVA.hook import hook_logger as llava_hook_logger
|
|
|
|
| 26 |
</div>
|
| 27 |
"""
|
| 28 |
|
| 29 |
+
def get_base64_images(image):
|
| 30 |
+
image = image.convert('RGB')
|
| 31 |
+
buffer = BytesIO()
|
| 32 |
+
image.save(buffer, format='JPEG')
|
| 33 |
+
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 34 |
+
return image_base64
|
| 35 |
+
|
| 36 |
+
def vqa(image, question, api_key):
|
| 37 |
+
base64_image = get_base64_images(image)
|
| 38 |
+
headers = {
|
| 39 |
+
"Content-Type": "application/json",
|
| 40 |
+
"Authorization": f"Bearer {api_key}"
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
payload = {
|
| 44 |
+
"model": "gpt-4-turbo-2024-04-09",
|
| 45 |
+
"messages": [
|
| 46 |
+
{
|
| 47 |
+
"role": "user",
|
| 48 |
+
"content": [
|
| 49 |
+
{
|
| 50 |
+
"type": "text",
|
| 51 |
+
"text": question
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"type": "image_url",
|
| 55 |
+
"image_url": {
|
| 56 |
+
"url": f"data:image/jpeg;base64,{base64_image}",
|
| 57 |
+
"detail":"low"
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
],
|
| 63 |
+
"max_tokens": 300
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
| 67 |
+
return response.json()["choices"][0]["message"]["content"]
|
| 68 |
+
|
| 69 |
+
def compare(input_image, output_image, query, api_key):
|
| 70 |
+
original_response = vqa(input_image, query, api_key)
|
| 71 |
+
api_response = vqa(output_image, query, api_key)
|
| 72 |
+
return original_response, api_response
|
| 73 |
+
|
| 74 |
def init_clip():
|
| 75 |
+
clip_model, clip_prs, clip_preprocess, _, clip_tokenizer = clip_get_model(
|
| 76 |
+
model_name = "ViT-L-14-336" if torch.cuda.is_available() else "ViT-L-14",
|
| 77 |
+
layer_index = 22, device= DEVICE)
|
| 78 |
return {"clip_model": clip_model, "clip_prs": clip_prs, "clip_preprocess": clip_preprocess, "clip_tokenizer": clip_tokenizer}
|
| 79 |
|
| 80 |
def init_llava():
|
|
|
|
| 183 |
text_query = gr.Textbox(
|
| 184 |
label="Query",
|
| 185 |
placeholder="Enter a query about the image",
|
| 186 |
+
lines=2,
|
| 187 |
type="text")
|
| 188 |
text_pre_answer = gr.Textbox(
|
| 189 |
label="LLaVA Response",
|
| 190 |
info = 'Only used for LLaVA-Based API. Press "Pre-Answer" to generate the response.',
|
| 191 |
placeholder="",
|
| 192 |
+
lines=2,
|
| 193 |
interactive=False,
|
| 194 |
type="text")
|
| 195 |
text_highlight_text = gr.Textbox(
|
| 196 |
label = "Hint Text.",
|
| 197 |
+
info = "The text based on which the mask will be generated. For LLaVA-Based API, it should be a substring of the pre-answer.",
|
| 198 |
placeholder="Enter the hint text",
|
| 199 |
lines=1,
|
| 200 |
type="text")
|
| 201 |
+
text_api_token = gr.Textbox(
|
| 202 |
+
label = "OpenAI API Token",
|
| 203 |
+
placeholder="Input your OpenAI API token",
|
| 204 |
+
lines=1,
|
| 205 |
+
type="text")
|
| 206 |
+
text_original_image_response = gr.Textbox(
|
| 207 |
+
label="GPT Response (Original Image)",
|
| 208 |
+
placeholder="",
|
| 209 |
+
lines=2,
|
| 210 |
+
interactive=False,
|
| 211 |
+
type="text")
|
| 212 |
+
text_API_image_response = gr.Textbox(
|
| 213 |
+
label="GPT Response (API-maksed Image)",
|
| 214 |
+
placeholder="",
|
| 215 |
+
lines=2,
|
| 216 |
+
interactive=False,
|
| 217 |
+
type="text")
|
| 218 |
|
| 219 |
radio_api_method = gr.Radio(
|
| 220 |
["CLIP_Based API", "LLaVA_Based API"] if torch.cuda.is_available() else ["CLIP_Based API"],
|
|
|
|
| 254 |
|
| 255 |
generate_llava_response_button = gr.Button("Pre-Answer", interactive=False)
|
| 256 |
generate_mask_button = gr.Button("API Go!")
|
| 257 |
+
ask_gpt_button = gr.Button("GPT Go!")
|
| 258 |
|
| 259 |
with gr.Blocks() as demo:
|
| 260 |
gr.Markdown(MARKDOWN)
|
| 261 |
state_cache = gr.State({})
|
| 262 |
state_model = gr.State(init_clip())
|
| 263 |
with gr.Row():
|
| 264 |
+
image_input.render()
|
| 265 |
+
image_output.render()
|
| 266 |
+
with gr.Accordion("Query and API Processing"):
|
| 267 |
+
with gr.Row():
|
| 268 |
+
radio_api_method.render()
|
| 269 |
+
with gr.Row(equal_height=True):
|
| 270 |
+
with gr.Column():
|
|
|
|
|
|
|
| 271 |
text_query.render()
|
|
|
|
| 272 |
generate_llava_response_button.render()
|
|
|
|
| 273 |
text_pre_answer.render()
|
|
|
|
| 274 |
text_highlight_text.render()
|
| 275 |
+
with gr.Column():
|
|
|
|
| 276 |
slider_enhance_coe.render()
|
|
|
|
| 277 |
slider_kernel_size.render()
|
|
|
|
| 278 |
radio_interpolate_method_name.render()
|
|
|
|
| 279 |
slider_mask_grayscale.render()
|
| 280 |
+
with gr.Row():
|
| 281 |
generate_mask_button.render()
|
| 282 |
+
with gr.Accordion("GPT Response"):
|
| 283 |
+
text_api_token.render()
|
| 284 |
+
ask_gpt_button.render()
|
| 285 |
+
with gr.Row():
|
| 286 |
+
text_original_image_response.render()
|
| 287 |
+
text_API_image_response.render()
|
| 288 |
+
with gr.Accordion("Examples"):
|
| 289 |
+
examples_images_responses = gr.Examples(
|
| 290 |
+
[
|
| 291 |
+
|
| 292 |
+
],
|
| 293 |
+
[
|
| 294 |
+
image_input,
|
| 295 |
+
image_output,
|
| 296 |
+
text_query,
|
| 297 |
+
text_pre_answer,
|
| 298 |
+
text_highlight_text,
|
| 299 |
+
slider_enhance_coe,
|
| 300 |
+
slider_kernel_size,
|
| 301 |
+
radio_interpolate_method_name,
|
| 302 |
+
slider_mask_grayscale,
|
| 303 |
+
text_original_image_response,
|
| 304 |
+
text_API_image_response
|
| 305 |
+
],
|
| 306 |
+
)
|
| 307 |
|
| 308 |
radio_api_method.change(
|
| 309 |
fn=change_api_method,
|
|
|
|
| 349 |
],
|
| 350 |
outputs=[image_output, state_cache]
|
| 351 |
)
|
| 352 |
+
ask_gpt_button.click(
|
| 353 |
+
fn=compare,
|
| 354 |
+
inputs=[image_input, image_output, text_query, text_api_token],
|
| 355 |
+
outputs=[text_original_image_response, text_API_image_response]
|
| 356 |
+
)
|
| 357 |
|
| 358 |
demo.queue(max_size = 1).launch(show_error=True)
|